SPEAR: Software-defined Python-Enhanced RFSoC
for Wideband Radio Applications

Wei Cheng, Zhihui Gao, Tingjun Chen

Department of Electrical and Computer Engineering, Duke University

ABSTRACT

Next-generation wireless systems utilize large signal band-
widths to meet the growing data rate demands of emerging
applications and to provide enhanced resolution for wire-
less sensing and imaging. This poses significant challenges
in the design of the underlying datapaths that carry and
transfer signals across different domains, such as between
memory and data converters in various software-defined ra-
dio (SDR) platforms. In this paper, we present the design
and implementation of SPEAR, which is an SDR platform
based on the Xilinx RFSoC ZCU216 evaluation board capa-
ble of supporting real-time streaming of signals with a band-
width of up to 1.25 GHz employing the direct RF radio archi-
tecture. SPEAR features hardware-assisted direct memory
access (DMA) control for real-time data streaming, and a
Python-based hardware configuration tool and signal pro-
cessing framework. Our experiments show that SPEAR can
support a real-time bandwidth of up to 1.25 GHz for 256QAM
modulation that satisfies the 3GPP error vector magnitude
(EVM) requirement of 3.5%.

CCS CONCEPTS

+ Networks — Network experimentation; - Computer

systems organization — Real-time system architecture.

KEYWORDS

Software-defined radio; FPGA; RFSoC; hardware-software
co-design; testbed

ACM Reference Format:
Wei Cheng, Zhihui Gao, Tingjun Chen. 2024. SPEAR: Software-

defined Python-Enhanced RFSoC for Wideband Radio Applications.

In The 30th Annual International Conference on Mobile Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

ACM MobiCom 24, November 18-22, 2024, Washington D.C., DC, USA

© 2024 Association for Computing Machinery.

ACM ISBN 979-8-4007-0489-5/24/11...$15.00
https://doi.org/10.1145/3636534.3697310

and Networking (ACM MobiCom ’24), November 18-22, 2024, Wash-
ington D.C., DC, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3636534.3697310

1 INTRODUCTION

Next-generation wireless systems utilize large signal band-
widths to meet the growing data rate demands of emerging
applications and to provide enhanced resolution for wireless
sensing and imaging [17, 21, 22]. For example, 5G new radio
(NR) supports channel bandwidth of up to 400 MHz in fre-
quency range 2 (FR2) [3], and IEEE 802.11ad supports a band-
width of up to 2.16 GHz in the 60 GHz unlicensed band [1].
However, supporting such high data rates poses significant
challenges in the design of the underlying datapaths that
carry and transfer signals across different domains, such as
between memory and digital-to-analog converters (DACs)
as well as analog-to-digital converters (ADCs), on a variety
of software-defined radio (SDR) platforms.

In recent years, Radio Frequency System-on-Chip (RFSoC)
has emerged as a promising solution to address these chal-
lenges by providing built-in multi-GHz sampling rates RF
data converters (RF-DC) and powerful FPGA fabrics for dat-
apath routing. RFSoC platforms have been used across var-
ious domains to build high-performance SDRs and beam-
forming systems [15, 26—-28], MIMO radios and radars [13,
16, 18, 23, 24], as well as quantum control [14, 25] and analog
computing systems. These works customized the hardware
and/or software design for specific applications, yet there
remains potential for improving system performance and
further investigating the trade-offs between real-time data
streaming support and ease of programmability.

In this paper, we present the design and implementation
of SPEAR (Software-defined Python-EnhAnced RFSoC), an
SDR platform based on the Xilinx RFSoC ZCU216 evaluation
board [12]. SPEAR supports real-time streaming of signals
with a bandwidth of up to 1.25 GHz employing the direct RF
architecture. The design of SPEAR includes two key compo-
nents: (i) a real-time, streaming-based hardware design for
the transmitter (TX) and receiver (RX) datapaths, and (ii) a
Python interface that enables users to easily configure the
RFSoC hardware for wideband radio applications while be-
ing able to experiment with customized waveforms and digi-
tal signal processing (DSP) algorithms using the Python pro-
gramming language. This design effectively decouples the

https://doi.org/10.1145/3636534.3697310
https://doi.org/10.1145/3636534.3697310
https://doi.org/10.1145/3636534.3697310

Table 1: Comparison of previous RFSoC-based SDR system designs and SPEAR.

mmWaveSDR [23] | MIMORPH [18] | qsfp28_offload [24] | SPEAR (This Work)
Hardware Platform RFSoC 2x2 ZCU111 RFSoC 4x2 ZCU216
Radio Architecture Zero-IF Zero-IF/Direct RF Direct RF Direct RF
TX Dataflow PS DRAM—DAC BRAM—DAC PS DRAM—DAC PS DRAM—DAC
TX DMA Type Xilinx DMA Xilinx DMA Xilinx DMA Custom IP
TX DMA Control CPU busy waiting CPU busy waiting HW state machine HW state machine
RX Dataflow ADC—PS DRAM ADC—PL DRAM ADC—CMAC ADC—PL DRAM
RX DMA Type Xilinx DMA Custom IP N/A Custom IP
RX DMA Control CPU busy waiting | HW state machine N/A HW state machine
Real-Time Streaming No Yes Yes Yes
Bandwidth 1.536 GHz 1.76 GHz 2.457 GHz 1.25 GHz
Preamble Detection Yes (SW/HW) Yes (HW) No Yes (SW)
Python Interface Yes (control only) No Yes (control only) Yes (control and DSP)

software-based control of direct memory access (DMA) for
streaming and offloads it into the hardware, therefore ensur-
ing robust, real-time streaming capabilities while alleviating
the CPU’s workload and freeing it up for other tasks.

We evaluate the performance of SPEAR using two setups
in terms of the supported real-time bandwidth and link qual-
ity of transmission (QoT). RFSoC-USRP, which utilizes a
ZCU216 boards as the TX and a USRP X310 SDR as the RX,
and RFSoC-RFSoC, which utilizes two ZCU216 boards as
the TX and RX. We consider link QoT metrics including the
signal-to-noise ratio (SNR), error vector magnitude (EVM),
and bit error rate (BER). We explore different system config-
urations with varying modulation schemes from 16QAM to
1024QAM, signal bandwidth from 100 MHz to 1.25 GHz, and
tunable carrier frequency within the 1% Nyquist zone. The
experimental results show that SPEAR can support a real-
time bandwidth of up to 1.25 GHz for 256QAM modulation
that satisfies the 3GPP EVM requirement of 3.5% [3]. Overall,
SPEAR provides a versatile and flexible platform for users in-
terested in operating real-time RF communication systems
with GHz+ bandwidth. Both the software and hardware de-
sign of SPEAR, and its supported example experiments, are
open-sourced in [9].

2 RELATED WORK

Existing RESoC-based SDR platforms, including Xilinx’s ref-
erence design [6], mmWaveSDR [23], MIMORPH [18], and
qsfp28_offload [24], have shown that creating a wideband
SDR platform necessitates specific hardware-software (HW-
SW) co-design strategies and high-speed datapath designs
to support the real-time streaming of signals with large band-
width. In this section, we provide an overview of existing
RFSoC-based SDR systems including the hardware design
and software architecture, as summarized in Table 1.

mmWaveSDR [23]. A mmWave SDR platform is proposed
in this work by connecting an RFSoC 2x2 board [8] with

the Sivers EVK06002 60 GHz phased array transceiver mod-
ules. mmWaveSDR incorporates a waveform-triggered re-
ception hardware IP for hardware-based preamble detection

and transfers the detected signal frames to a host computer

for offline baseband processing. Software-triggered recep-
tion is also available by capturing a fixed number of I/Q sam-
ples for post-processing. Both the software- and hardware-
triggered methods in this work are intended to bridge the

processing speed difference between ADCs and the host com-
puter. However, the TX/RX datapath design of mmWaveSDR

offers slower data rates compared to what the DAC/ADC

datapath is capable of. This implies that mmWaveSDR can-
not operate in real-time. Further analysis of the design re-
quirements based on the datapath data rate and DAC/ADC

sampling rates is provided in §3.1.

MIMORPH [18]. MIMORPH is a real-time reconfigurable
SDR platform supporting 60 GHz 4x4 MIMO with a band-
width of 1.536 GHz and sub-6 GHz 4x4 MIMO with a band-
width of 160 MHz. It also supports closed-loop configura-
tion, where the devices switch between TX and RX modes
and can react to the received packets. MIMORPH’s TX de-
sign leverages loopback memory (LBM) blocks, which is block
RAM (BRAM) working as circular buffers to continuously
transmit samples. However, the number of I/Q samples that
can be streamed continuously is limited due to the size of the
FIFO and the fact that only a limited number of FIFOs can
be synthesized on an FPGA. On the RX side, MIMORPH im-
plemented highly optimized IPs and drivers to support con-
tinuously writing the received samples into the PL DRAM.

qsfp28_offload [24]. qsfp28_offload demonstrated that it
is possible to offload a full 2.457 GHz bandwidth RF signal
captured by a direct RF sampling RX using an RFSoC 4x2
board to a host machine, which can then perform the FFT
operation using a GPU to obtain the spectrum density and
occupancy information. Furthermore, hardware UDP IP is
added so that the signal offloading process can be done across

PS PLDRAM Clk DAC Datapath Clk CPU Control Clk PL RF-DC

PS DRAM Clk ADC Datapath Clk

I PS DRAM | \“l Interrupt Controller | | Tx DMA FIFO -‘_’PF
— = ~

(a)
b) -

Rx Streaming DMA

- A e
Rx AXI Data IP
CcPU PL DRAM | Controller H Mover I" Ao Y =
- ADC
~
T T AXI Data -' P
DAC

Tx Streaming DMA
Figure 1: Hardware architecture of (a) reference design from
Xilinx, and (b) SPEAR. Note that both CPU and PS DRAM
belong to the Processing System (PS) while the other com-
ponents belong to the Processing Logic (PL).

the Internet by continuously streaming UDP packets through
the 100 GbE transceiver on the board. On the TX side, the

signal generator module allows generating waveforms that

are pre-defined in the PS DRAM to be transferred repeat-
edly to DAC using DMA configured in the cyclic mode. This

DMA configuration allows the hardware to go through a

list of user-defined memory segments and move data within

those scattered memory regions to the DAC. qsfp28_offload

generates waveform using the ARM CPU cores and streams

the received I/Q samples to the host machine running the

GNU Radio gr-fosphor module, which visualizes the real-
time spectrum using GPU acceleration.

Our design. The comparison between existing RESoC-based
SDR designs and our proposed design, SPEAR, is detailed

in Table 1. In this work, we study various design choices

including: (i) TX/RX dataflow; (ii) TX/RX DMA type and

control; (iii) maximum supported bandwidth with real-time

data streaming; and (iv) other system supports such as packet
detection, DSP, and the control interface. To the best of our

knowledge, SPEAR is the first design that supports real-time

data streaming of signal with a bandwidth up to 1.25 GHz

leveraging hardware-assisted data streaming. It allows user-
friendly hardware configuration and highly customizable

DSP workflows, both via a Python interface.

3 IMPLEMENTATION OF SPEAR

In this section, we first provide an overview of Xilinx’s RF-
SoC reference design and its limitations, particularly on the
software-based DMA control. Then, we present the design
of SPEAR including its hardware and software components.

3.1 RFSoC Reference Design

Hardware design. Xilinx’s reference hardware design is
shown in Fig. 1(a), which comprises a quad-core ARM CPU
(Processing System, PS), PS DRAM, FPGA fabric (Process-
ing Logic, PL), FIFOs on the TX and RX datapaths, Direct
Memory Access (DMA) IP that transfers data between the

DAC/ADC and DRAM, an interrupt controller that notifies
the CPU once a DMA transaction is completed, and RF Data
Converters (RF-DC) that contains DACs/ADCs. This refer-
ence design supports data transfer (e.g., streaming of 1/Q
samples) between the PS DRAM and DACs/ADCs, allowing
users to generate baseband waveforms and process captured
signals for different SDR applications.

In RFSoC-based SDRs, clock domain management is a crit-
ical aspect of the hardware design, since the DACs/ADCs
usually operate at multi-GHz sampling rates while their dat-
apaths operate at only 100s of MHz. To ensure consistent
data rates across clock domains, the Super Sample Rate (SSR)
circuits is used. In particular, the required datapath clock fre-
quency for a specific sampling rate can be determined by

Jsamp = L - K+ folk, datapath - mode (1)

where fiump denotes the sampling rate of the DAC/ADC with
an interpolation/decimation factor of L, fiix, datapath denotes
the clock frequency for the DAC/ADC datapath, K denotes
the number of samples (I and Q) handled per clock cycle, and
mode = 1 and 1/2 for the real-to-real and I/Q-to-real mode,
respectively. For example, a real-time 2.5 GSaps DAC with
2X interpolation requires a datapath with 4 I/Q samples per
cycle to operate at 312.5 MHz in the I/Q-to-real mode.

When operating an RFSoC in the direct RF radio architec-
ture, the effective I/Q sampling rate, or the supported signal
bandwidth, of an ADC operating in the real-to-I/Q mode
is equal to the raw sampling rate of the ADC divided by
the decimation factor. For instance, a 2.5 GSaps ADC with
2x decimation factor generates a 1.25 GSaps data stream for
each of the I and Q channels, where each channel captures
0.625 GHz signals bandwidth. This also applies to the calcu-
lation of the I/Q sampling rate on the TX side using a DAC
with an interpolation factor.

To ensure real-time data streaming, the hardware design
needs to make sure samples can be pulled from memory fast
enough so that the datapath is never “starved”. For exam-
ple, assuming a TX DMA is pulling I/Q samples from the
PS DRAM at clock speed of 333 MHz with 4 I/Q samples
per clock cycle and 2X interpolation factor, the supported
DAC sampling rate can go up to a maximum of 2.66 GSaps
(2 X 8 X 333 MHz X %) according to (1). This is equivalent
to a data transfer speed of 42.6 Gbps from the DRAM with
16-bit I/Q samples, and this configuration shall be sufficient
for real-time streaming of I/Q samples from the PS DRAM
to the DAC operating at a sampling rate of 2.5 GSaps.

Software architecture. Xilinx provides both Python- and
C-based APIs to facilitate user interaction with FPGA hard-
ware [10]. While C-based APIs are widely used in embedded
devices, Python-based APIs provide users easier access to a
broad range of versatile libraries for arithmetic operations

,
PS i PL

P
! |
~ |
v
\I
i
i
i
i

\
i
\
\ CMD_SIN

Y43 AWI

Xilinx DMA

W
v

i pomooint

v,
i,
v
!)
i
s
i

Figure 2: The software execution flow of DMA control with
(a) CPU busy waiting (reference design), and (b) hardware-
assisted streaming (SPEAR). The black dotted line indicates
a separation between PS and PL while the red dotted line
represents the interaction between software running on PS
and hardware state machines implemented on PL.

) Yes

(a

and signal processing, and therefore, can significantly re-
duce development time and smoothen the learning curve for
users. However, compared to C-based APIs, Python-based
APIs usually suffer from a higher control latency with larger
variation. For example, our measurements using the ZCU216
board [12] show that writing to a memory-mapped address
to trigger a DMA transfer using the Python-based PYNQ [11]
DMA driver incurs msec-level delay.

To optimize the trade-offs between adopting a Python
API and ensuring system performance, we first identify the
software execution flow that is used to control Xilinx’s DMA.
The combination of Xilinx DMA and CPU busy waiting soft-
ware control follows the execution flow as shown in Fig. 2(a),
where a nested control loop is involved. In particular, the
CPU constantly reads DMA registers to check whether a
DMA transfer has been completed as indicated by the red
circle. This busy waiting process consumes significant CPU
time to achieve real-time performance.

3.2 Design of SPEAR

Fig. 1(b) depicts the dataflow of our hardware design, where
the generated I/Q samples on the TX side are streamed from
the PS-DRAM to the DAC(s), and the captured I/Q samples
on the RX side are streamed from the ADC(s) to the PL
DRAM. This asymmetric dataflow design prevents resource
contention that may occur when reading and writing I/Q
samples to the same piece of memory.! In particular, the
TX datapath employs a streaming DMA consisting of a cus-
tomized TX controller and Xilinx’s AXI Data Mover IP [20].

IEither PS or PL DRAM works for streaming data to/from the TX/RX datap-
ath. The dataflow of our design achieves the best performance when stream-
ing data from the PS DRAM to DAC(s) and ADC(s) to PL DRAM.

As mentioned in §3.1, the PS DRAM clock domain must op-
erate at a higher clock speed than the DAC datapath clock
domain to ensure real-time data transfer. Similarly, the RX
datapath employs a RX streaming DMA consisting of a cus-
tomized RX controller and Xilinx’s AXI Data Mover IP. The
requirement for real-time data transfer meionted above also
applies to the RX datapath. In addition to the TX and RX
datapaths, the CPU control clock domain operates at a fre-
quency of 100 MHz, connecting the CPU with other compo-
nents via an AXI interface [19].

Streaming DMA based on hardware FSM. The Stream-
ing DMA is the most important hardware component that
distinguishes our design from previous works. It includes a
custom controller and the AXI Data Mover IP [20] provided
by Xilinx. The AXI Data Mover processes DMA requests via
an AXI-Stream port, facilitating data transfer between an
AXI port connecting to memory and another AXI-Stream
port connecting to a DAC/ADC.

Our customized Streaming DMA is used in both the TX
and RX datapaths, as illustrated in Fig. 1(b). The customized
controller IP within the streaming DMA functions as a finite
state machine (FSM), whose transition diagram is shown in
Fig. 2(b). Initially, the system remains in the IDLE state and
transitions to the corresponding state when a command is is-
sued. Transitioning from the IDLE state to SINGLE state via
a CMD_SIN command indicates that a single DMA trans-
fer will occur by initiating a single request to the AXI Data
Mover IP [20]. This request specifies the number of samples
to be moved to/from their corresponding memory address.

The transition from the IDLE state to STREAMING state
is triggered by a CMD_STR command, indicating streaming
DMA requests to the AXI Data Mover and initiates contin-
uous DMA transfers. Based on the analysis in §3.1 and (1),
our streaming DMA design is capable of moving samples
from/to the PS/PL DRAM at 42.6 Gbps. The controller will
exit the STREAMING state only if it receives a CMD_IDL
command to transition back to the IDLE state. When a com-
mand is invalid, the FSM will transition to the ERROR state.
As highlighted in [20], it is important to gracefully termi-
nate the streaming process. We observed that the AXI Data
Mover continues to fetch samples from memory even after
that memory segment has been deallocated by the operating
system, which can result in arbitrary data being streamed
to/from the DAC/ADC and may lead to unstable outputs. To
prevent this, the user must send an CMD_IDLE command
to transition the controller to a HALT state, effectively ter-
minating ongoing data transfers. Once the AXI Data Mover
is completely halted, the controller will transition back to
IDLE state. Fig. 3 illustrates the detailed signaling correspond-
ing to the transition between the IDLE, STREAM, HALT, and
SINGLE states.

RST \
CLK

cMD_* STR IDL SIN
STATE 7/ IDLE__) STREAM IDLE IDLE
TVALD [T N\

; TREADY

' roam DO D3 [D4\

Figure 3: The waveform-level behavior of the TX/RX con-
troller as part of the designed Streaming DMA.

Software architecture and DMA control method. For
both TX and RX datapaths, it is important to have a DMA
that can efficiently and repeatedly transfer samples between
memory (PS and/or PL DRAM) and the DACs/ADCs in real-
time. The different DMA types and control methods com-
pared to previous RFSoC-based SDR platforms are summa-
rized in Table 1. In contrast to the DMA control employed by
previous works as shown in Fig. 2(a), SPEAR offloads the in-
ner control loop to the hardware FSM, as shown in Fig. 2(b).
In our design, CPU is only responsible for the FIFO monitor-
ing task executed at 1-second intervals, which can be further
relaxed if FIFO monitoring is required at a coarser granular-
ity. Here, the FIFO monitoring task is created to ensure real-
time performance by periodically checking the number of
remaining samples in the TX and RX FIFOs. If the TX FIFO is
never empty and RX FIFO is never full then real-time stream-
ing is guaranteed. Leveraging this Streaming DMA, SPEAR
relieves CPU from busy waiting so that CPU time can be re-
purposed to other tasks such as DSP as well as controlling
and interfacing with other peripheral devices.

3.3 DSP pipeline with an OFDM PHY

We also develop a Python-based DSP pipeline that employs
an OFDM-based physical layer, which can be used to gen-
erate customized I/Q waveforms as well as process and an-
alyze received I/Q waveforms. The OFDM-based PHY layer
employs an FFT size of 64 (which can be customized), and
leverages fast Fourier transform (FFT) and its inverse (IFFT)

to convert frequency-domain data symbols to the time-domain

I/Q waveforms. We consider four modulation schemes in-
cluding 16QAM, 64QAM, 256QAM, and 1024QAM. The chan-
nel state information (CSI) between the TX and RX can be es-
timated using predefined pilot symbols, which is then used
for the equalization and demodulation of the received signal.
Note that since the RFSoC boards are configured to operate
in the direct RF architecture, there is no carrier frequency
offset (CFO) between the TX and RX due to the absence of
an RF mixer driven by a local oscillator (LO). The Python-
based DSP pipeline allows the calculation of the following
metrics of the received signal to evaluate the link perfor-
mance: SNR, EVM, and BER.

Figure 4: RFSoC-USRP setup used in Config 1 (Left), and
RFSoC-RFSoC setup used in Config 2 and Config 3 (Right).

Table 2: Three configurations in our evaluation.

Config1 | Config2 | Config3
Transmitter (TX) ZCU216 ZCU216 ZCU216
DAC Samp. Rate 4.0 GSaps 2.5GSaps | 2.5GSaps
Interpolation 40% 8% 2x
Receiver (RX) USRP X310 | ZCU216 ZCU216
ADC Samp. Rate 0.2 GSaps 2.5GSaps | 2.5GSaps
Decimation 2% 8% 2x
Link Bandwidth 100MHz | 312.5MHz | 1.25GHz

4 EXPERIMENTS AND EVALUATIONS
4.1 Experimental Setup

We evaluate the performance of SPEAR using two setups
shown in Fig. 4 under three configurations (see Table 2):

e Config 1: RFSoC-USRP (100 MHz), where the TX is an
RFSoC ZCU216 board whose DAC runs at a sampling rate
of 4.0 GSaps with 40X interpolation, and the RX is a USRP
X310 SDR. This configuration enables 100 MHz link band-
width where the TX carrier frequency can be swept be-
tween 0-2 GHz (the 1% Nyquist zone) by tuning the NCO;

o Config 2: RFSoC-RFSoC (312.5 MHz), where two RF-
SoC ZCU216 boards are used as the TX and RX, whose
DAC and ADC run at a sampling rate of 2.5 GSaps with 8x
interpolation and decimation, respectively. This configu-
ration enables a link with 312.5 MHz bandwidth, whose
carrier frequency can be swept between 0-1.25 GHz (the
1%t Nyquist zone) by tuning the NCO;

e Config 3: RFSoC-RFSoC (1.25 GHz), where two RFSoC
ZCU216 boards are used as the TX and RX, whose DAC
and ADC run at a sampling rate of 2.5 GSaps with 2X inter-
polation and decimation, respectively. This configuration
enables a link with 1.25 GHz bandwidth. Since this band-
width occupies the entire the 1%t Nyquist zone, the carrier
frequency is fixed at 625 MHz.

The inverse sinc filter [7] for the RFSoC DAC is activated to
mitigate the roll-off at the edge of the 1%t Nyquist zone.

To benchmark SPEAR’s performance under each configu-
ration, we establish a wired channel between the TX and RX
using an SMA cable. A 0.2 MHz-6.0 GHz wideband Marki

—— 64QAM 256QAM — a =22 ---q=2% ---q=26
50 50 T
e o1
~ 40 A =y ~ 40 5
© S P e v o
- iy gy - Sthen g c i
x 30 :_‘A 30 S i
= = N— N
w20 v 20 =
o
10 10 :

0 04 08 12 16 2.0
Frequency (GHz)

(a) Config 1

0 0204060810 1.25
Frequency (GHz)

(b) Config 2

Figure 5: Measured link SNR under varying scaling factors,
a, and NCO settings within the 15t Nyquist zone for Config 1
(0-2.0 GHz) and Config 2 (0-1.25 GHz).

BALH-0006 balun [4] is employed to convert the differential
signal output from the RFSoC DAC to single-ended output.
In addition, two BLK-89-S+ DC blocks [5] are applied on the
differential ports of the balun. For the RFSoC to RFSoC con-
nections, two Marki BALH-0006 baluns [4] with four BLK-
89-S+ DC blocks are connected in a symmetric manner to
handle the differential outputs of the DACs and ADCs.

The link SNR is measured by taking the ratio of the re-
ceived signal power to the RX noise level, and can be ad-
justed by scaling the amplitude of the TX baseband I/Q wave-
form by a factor of v/ € [0, 1]. For example, under Config 3,
amaximum TX power (with ¢ = 1) at the output of the DAC
is measured as —10.5 dBm when the TX waveform is scaled
to the DAC’s maximum input level of 2!* (one extra bit is
used to indicate the + voltage of the 14-bit DAC), and the
TX power can be reduced by 3dB or 6 dB from the maxi-
mum power by setting @ = 27! or 272, Fig. 5 shows the mea-
sured link SNR values with different modulation schemes
and scaling factors across the 1% Nyquist zone for Config 1
and Config 2. The lower link SNR at the low part of the 1
Nyquist zone in Config 1 is due to the frequency response
of USRP UBX-160 daughterboard [2]. Such an effect is not
observed for Config 2, however, the link SNR slightly de-
grades at high carrier frequencies closer to the boundary of
the 1%t Nyquist zone. For each experiment, we transmit and-
collect 100 OFDM packets, from which the SNR, EVM, and
BER results are obtained.

4.2 Verifying the Design of SPEAR

The FIFO monitoring task mentioned in §3 periodically checks
the remaining elements in a FIFO to ensure real-time stream-
ing at the circuit level. To further confirm this, we validate

real-time TX streaming by streaming a pre-defined continuous-

wave (CW) signal and verifying the continuity and integrity
of the output signal from the DAC in both the time and fre-
quency domains over a period of 30 minutes, using a high-
speed oscilloscope and spectrum analyzer, respectively. To

SNR=32.3dB - SNR=32.3dB
+1 m 80
. °
£ [%
60
g uﬂ w m, | e <
= i |'| - 40
§ “ il r é
— real imag o)
-1 Z 20
0.0 0.1 0.2 0.3 0.4 0 03 06 09 1.2
Time (us) Frequency (GHz)
(a) Time Domain (b) Freq. Domain
EVM=3.4%, BER=0.028% EVM=3.4%, BER=0.419%
1 PR NE 1 3
e F-F W9 & P
o SRR S
e LEER R EN S e
<0 PR <0
o R A o
FE e e R w s
-1 AT IR -1
1 0 1 -1 0 1
I Amp I Amp.
(c) 64QAM (d) 256QAM

Figure 6: (a)-(b) Received I/Q waveform for 256QAM visual-
ized in the time and frequency domains, and (c)—-(d) Exam-
ple constellation diagrams of 64QAM and 256QAM for the
1.25 GHz bandwidth link in Config 3.

validate real-time RX streaming, we ensure that the hard-
ware is capable of capturing a pre-defined waveform gener-
ated by the real-time TX without missing any samples.

We also validate our Python-based DSP pipeline, adapted
from [16], which can be used to generate OFDM-based PHY
waveforms with customized parameters such as the modula-
tion order. We configure the Streaming DMA on the TX of
RFSoC to the “Streaming Mode”, enabling real-time trans-
mission of the waveform. The streaming DMA on the RX of
RFSoC is initially set to the “Streaming Mode”, and a FIFO
monitoring task is executed to ensure real-time performance.
It is then switched to the “Single Transfer Mode” to cap-
ture consecutive I/Q samples. These captured samples are
processed using the Python-based DSP pipeline, including
packet detection, equalization, demodulation, and decoding.
Figs. 6(a) and 6(b) show the captured waveform with 256QAM
modulation under Config 3 in the time and frequency do-
mains, respectively. Example demodulated constellation di-
agrams for 64QAM and 256QAM under the same configura-
tion are shown in Figs. 6(c) and 6(d), respectively. In partic-
ular, with a link SNR of 32.3 dB, 64QAM achieves an EVM
of 3.4% and a BER of 0.03%, and 256QAM achieves an EVM
of 3.4% and a BER of 0.42%.

While the RX of RFSoC can capture and stream samples in
real-time, the current Python-based DSP pipeline running
on PS cannot process all the received packets at line rates
due to limited CPU processing power. Future work includes
migrating packet detection and lower PHY functions into
the RFSoC PL as well as offloading the remaining DSP tasks
to an edge server (for details see §5).

—— 16QAM —— 64QAM 256QAM —=— 1024QAM
— a=27? ---a=24 --o=2%
14 14
12 13.5% 12
310 10
& 8 8.0%| & 8
Z 6 2 6] =
@ 4 e
2 2 N i S
02:0% o TN
10 20 30 40 50 0 04 08 12 1.6 20
SNR (dB) Frequency (GHz)

(a) With fixed NCO at 1.05 GHz (b) EVM for 64QAM and 256QAM
Figure 7: (a) Measured SNR versus EVM in at 1.05 GHz carrier
frequency, and (b) measured EVM for 64QAM and 256QAM
EVM with varying scaling factors under Config 1.

—— 16QAM —— 64QAM 256QAM —=— 1024QAM
— a =27 ---a=24 --ra =2
14 14 :
12 ¢ 13.5% 12 %
10 <10 ==
X 8.0%| X <
< 8 1< 8 -
= = e @
< 6 s 6 T s
o4 [T
2 2
0 2.0% 0 b i
10 20 30 40 50 0 0.2 04 0.6 0.810 1.25

SNR (dB) Frequency (GHz)

(a) With fixed NCO at 650 MHz (b) EVM for 64QAM and 256QAM
Figure 8: (a) Measured SNR versus EVM in at 650 MHz carrier
frequency, and (b) measured EVM for 64QAM and 256QAM
EVM with varying scaling factors under Config 2.

4.3 Results

We evaluate the link performance for each configuration in
terms of the achieved EVM under varying link SNR values
and NCO settings in the direct RF radio architecture.

RFSoC-USRP with 100 MHz bandwidth. For Config 1,
we sweep the NCO frequency across the 1%t Nyquist zone
up to 2.0 GHz at 200 MHz step size, and Fig. 7(a) shows the
EVM of the signals with different modulations received by
the USRP, when the carrier frequency is set to be 1.05 GHz.
We follow the EVM requirements of 12.5%, 8%, and 3.5%
for 16QAM, 64QAM, 256QAM, respectively, as defined by
3GPP [3], and set the EVM requirement to be 2% for 1024QAM.
These EVM thresholds are indicated by the horizontal dashed
lines. The results show that the minimum required link SNR
for 64QAM and 256QAM to satisfy the corresponding 3GPP

EVM requirements is 23.9 dB and 33.0 dB, respectively. Fig. 7(b)

shows the EVM across varying NCO settings for 64QAM
and 256QAM with different scaling factors, a, correspond-
ing to a link SNR range of 32.8-45.0 dB across all considered
settings. Note that the worse EVM performance at smaller
NCO values is due to the lower link SNR (see Fig. 5(a)).

RFSoC-RFSoC with 312.5 MHz bandwidth. Using a sec-
ond ZCU216 board as the RX, this Config 2 supports a larger
signal bandwidth. We sweep the NCO frequency across the

—— 16QAM —— 64QAM 256QAM —=— 1024QAM
14
12 13.5%| 107 ‘?\\\
<10
& 8 8.0%| 107
E 6 %10‘3
w4 \ 1074
2
0l2.0% 105
0 10 20 30 40 0 10 20 30 40
SNR (dB) SNR (dB)

(a) EVM vs. SNR (b) BER vs. SNR

Figure 9: Measured EVM-SNR and BER-SNR relationship
with different modulation schemes under Config 3.

15! Nyquist zone up to 1.25 GHz at 200 MHz step size. Fig. 8(a)
shows the EVM of the signals with different modulations re-
ceived by the RX ZCU216, when the carrier frequency is set
to be 650 MHz. The results show that the minimum required
link SNR for 64QAM and 256QAM to satisfy the correspond-
ing 3GPP EVM requirements is 25.5dB and 28.6 dB, respec-
tively. The EVM performance is slightly worse compared
to Config 1 at larger signal bandwidth. Fig. 8(b) shows the
EVM across varying NCO settings for 64QAM and 256QAM
with different scaling factors, «, corresponding to a link SNR
range of 25.5-28.6 dB across all considered settings. Under
the same value of @, the EVM performance slightly degrades
larger NCO values due to the decreased link SNR closer to
the boundary of the 1% Nyquist zone (see Fig. 5(b)).

RFSoC-RFSoC with 1.25 GHz bandwidth. We evaluate
the performance of the RFSoC-RFSoC link with 1.25 GHz
real-time bandwidth under Config 3. Fig. 9 plots the mea-
sured EVM and BER across varying link SNR values with dif-
ferent modulation schemes. While this link supports 16QAM,
64QAM, and 256QAM with the desired EVM performance, it
is on the verge of meeting the EVM requirement for 1024QAM
at the maximum supported SNR of 38.1 dB, where the cor-
responding EVM is 2.1%. This is due to the system nonlin-
earity as we saturate the DAC to increase the SNR without
using an RF amplifier, and the frequency selectivity of the
DAC/ADC across a large signal bandwidth that spans the
entire 1% Nyquist zone.

5 LIMITATIONS AND FUTURE WORK

Currently, our platform utilizes a Python-based software for
preamble detection and demodulation, which is constrained
by the processing capabilities of the PS on the ZCU216 board.
We plan to migrate the packet preamble detection algorithm
to hardware and offload the demodulation process to a re-
mote server with a DSP pipeline, in a virtualized radio ac-
cess network (RAN) setting. In this proposed setup, only the
detected symbols would be captured and transmitted over a
high-speed link connecting the ZCU216 board and a host
computer. In addition, FFT and CSI estimation operations
consume a significant portion of time in the DSP pipeline;

therefore, we plan to migrate the FFT and other low-PHY op-
erations to the FPGA fabrics. Finally, the ZCU216 [12] sup-
ports 16 DACs and 16 ADCs, and we plan to expand our sys-
tem to a multi-channel configuration and explore the trade-
offs between efficient hardware-software co-design and the
maximum supported bandwidth per channel. We plan to de-
velop a subsystem that is capable of handling duty cycling
to further relieve the pressure on the TX/RX datapath.

6 CONCLUSIONS

In this paper, we present the design and implementation
of SPEAR and demonstrate its ability to support wideband
radio applications. SPEAR consists of a hardware-assisted
DMA control module and a Python-based interface for both
hardware configuration and highly customizable DSP. We
also presented comprehensive evaluations of SPEAR using
RFSoC-USRP and RFSoC-RFSoC setups under different con-
figurations, and showed that it can support a real-time chan-
nel bandwidth of up to 1.25 GHz for 256QAM modulation
that satisfies the 3GPP EVM requirement of 3.5%.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CNS-2128638,
CNS-2211944, and AST-2232458, and the Center for Ubiqui-
tous Connectivity (CUbiC), sponsored by Semiconductor Re-
search Corporation (SRC) and Defense Advanced Research
Projects Agency (DARPA) under the JUMP 2.0 program.

REFERENCES

[1] 2012. IEEE Standard for Information Technology - IEEE 802.11ad.

[2] 2015. RF Characterization Data of UBX USRP Daughterboard. https:
//files.ettus.com/performance_data/ubx/.

[3] 2020. 5G NR Base Station (BS) Radio Transmission and Recep-
tion. Technical Specification (TS) 38.211. 3rd Generation Partnership
Project (3GPP).

[4] 2024. Baluns - BALH-0006. https://markimicrowave.com/products/
connectorized/baluns/balh-0006/.

[5] 2024. DC Blocks - BLK-89-S+. https://www.mouser.com/datasheet/2
/1030/BLK_89_S_2b-1700195.pdf.

[6] 2024. Designing with the Zynq UltraScale+ RFSoC. https://learning
catalog-amd.netexam.com/Certification/46089/designing-with-the-
zyng-ultrascale-rfsoc.

[7] 2024. Introduction to Zynq UltraScale+ RFSoC RF Data Converter
v2.6 Gen 1/2/3/DFE LogiCORE IP Product Guide (PG269). https://do
cs.amd.com/r/en-US/pg269-rf-data-converter.

[8] 2024. RFSoC 2x2 kit. https://www.amd.com/en/corporate/university-
program/aup-boards/rfsoc2x2.html.

[9] 2024. SPEAR GitHub. https://github.com/functions-lab/SPEAR.

[10] 2024. Xilinx RF-DC C / Python APL https://github.com/Xilinx/embe
ddedsw/tree/master/XilinxProcessorIPLib/drivers/rfdc.

[11] 2024. Xilinx/PYNQ. https://github.com/Xilinx/PYNQ.

[12] 2024. Zynq UltraScale+ RFSoC ZCU216 Evaluation Kit. https://www.
xilinx.com/products/boards-and-kits/zcu216.html.

[13] Hoda Barkhordar-Pour, Jin Gyu Lim, Mohammed Almoneer, Patrick
Mitran, and Slim Boumaiza. 2023. Real-time FPGA-based implemen-
tation of digital predistorters for fully digital MIMO transmitters. In

Proc. IEEE IMS’23.

[14] Rodolfo Carobene, Alessandro Candido, Javier Serrano, Alvaro Orgaz-
Fuertes, Andrea Giachero, and Stefano Carrazza. 2023. Qibosoq: an
open-source framework for quantum circuit RFSoC programming.
arXiv preprint arXiv:2310.05851 (2023).

[15] Tingjun Chen, Prasanthi Maddala, Panagiotis Skrimponis, Jakub
Kolodziejski, Abhishek Adhikari, Hang Hu, Zhihui Gao, Arun Paidi-
marri, Alberto Valdes-Garcia, Myung Lee, Sundeep Rangan, Gil
Zussman, and Ivan Seskar. 2023. Programmable and open-access
millimeter-wave radios in the COSMOS Testbed: Design, deployment,
and experimentation. Computer Networks 234 (2023), 109922.

[16] Zhihui Gao, Zhenzhou Qi, and Tingjun Chen. 2024. Mambas: Maneu-
vering analog multi-user beamforming using an array of subarrays in
mmWave networks. In Proc. ACM MobiCom’24.

[17] Junfeng Guan, Arun Paidimarri, Alberto Valdes-Garcia, and Bod-
hisatwa Sadhu. 2021. 3-D imaging using millimeter-wave 5G signal
reflections. IEEE Trans. Microw. Theory Tech. 69, 6 (2021), 2936-2948.

[18] Jesus O Lacruz, Rafael Ruiz Ortiz, and Joerg Widmer. 2021. A real-time
experimentation platform for sub-6 GHz and millimeter-wave MIMO
systems. In Proc. ACM MobiSys’21.

[19] Arm Ltd. 2021. AMBA AXI-Stream Protocol Specification.

[20] Xilinx Ltd. 2022. AXI DataMover v5.1 LogiCORE IP Product Guide.
https://docs.amd.com/r/en-US/pg022_axi_datamover.

[21] Arun Paidimarri, Asaf Tzadok, Sara Garcia Sanchez, Atsutse Kludze,
Alexandra Gallyas-Sanhueza, and Alberto Valdes-Garcia. 2024. Eye-
Beam: A mmWave 5G-compliant platform for integrated communica-
tions and sensing enabling Al-based object recognition. IEEE J. Sel.
Areas Commun. 42 (2024), 2354-2368.

[22] Dipankar Raychaudhuri, Ivan Seskar, Gil Zussman, Thanasis Korakis,
Dan Kilper, Tingjun Chen, Jakub Kolodziejski, Michael Sherman, Zo-
ran Kostic, Xiaoxiong Gu, Harish Krishnaswamy, Sumit Maheshwari,
Panagiotis Skrimponis, and Craig Gutterman. 2020. Challenge: COS-
MOS: A city-scale programmable testbed for experimentation with
advanced wireless. In Proc. ACM MobiCom’20.

[23] Alphan Sahin, Mihail L Sichitiu, and Ismail Giivenc. 2023. A
millimeter-wave software-defined radio for wireless experimentation.
In Proc. [EEE CNERT 23.

[24] Marius Siauciulis, David Northcote, Josh Goldsmith, Louise H Crock-
ett, and Sarainas Kalade. 2023. 100GBit/s RF sample offload for RFSoC
using GNU Radio and PYNQ. In Proc. IEEE NEWCAS’23.

[25] Leandro Stefanazzi, Kenneth Treptow, Neal Wilcer, Chris Stoughton,
Collin Bradford, Sho Uemura, Silvia Zorzetti, Salvatore Montella, Gus-
tavo Cancelo, Sara Sussman, et al. 2022. The QICK (quantum instru-
mentation control kit): Readout and control for qubits and detectors.
Rev. Sci. Instrum. 93, 4 (2022).

[26] Kyle A Steiner and Mark B Yeary. 2023. A 1.6-GHz sub-Nyquist-
sampled wideband beamformer on an RFSoC. IEEE Trans. on Radar
Syst. 1(2023), 308-317.

[27] David Volz, Andreas Koch, and Bastian Bloessl. 2023. Software-
defined wireless communication systems for heterogeneous architec-
tures. In Proc. ACM MobiCom’23.

[28] Renjie Zhao, Timothy Woodford, Teng Wei, Kun Qian, and Xinyu
Zhang. 2020. M-cube: A millimeter-wave massive MIMO software
radio. In Proc. ACM MobiCom’20.

https://files.ettus.com/performance_data/ubx/
https://files.ettus.com/performance_data/ubx/
https://markimicrowave.com/products/connectorized/baluns/balh-0006/
https://markimicrowave.com/products/connectorized/baluns/balh-0006/
https://www.mouser.com/datasheet/2/1030/BLK_89_S_2b-1700195.pdf
https://www.mouser.com/datasheet/2/1030/BLK_89_S_2b-1700195.pdf
https://learningcatalog-amd.netexam.com/Certification/46089/designing-with-the-zynq-ultrascale-rfsoc
https://learningcatalog-amd.netexam.com/Certification/46089/designing-with-the-zynq-ultrascale-rfsoc
https://learningcatalog-amd.netexam.com/Certification/46089/designing-with-the-zynq-ultrascale-rfsoc
https://docs.amd.com/r/en-US/pg269-rf-data-converter
https://docs.amd.com/r/en-US/pg269-rf-data-converter
https://www.amd.com/en/corporate/university-program/aup-boards/rfsoc2x2.html
https://www.amd.com/en/corporate/university-program/aup-boards/rfsoc2x2.html
https://github.com/functions-lab/SPEAR
https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/rfdc
https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/rfdc
https://github.com/Xilinx/PYNQ
https://www.xilinx.com/products/boards-and-kits/zcu216.html
https://www.xilinx.com/products/boards-and-kits/zcu216.html

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation of SPEAR
	3.1 RFSoC Reference Design
	3.2 Design of SPEAR
	3.3 DSP pipeline with an OFDM PHY

	4 Experiments and Evaluations
	4.1 Experimental Setup
	4.2 Verifying the Design of SPEAR
	4.3 Results

	5 Limitations and Future Work
	6 Conclusions
	References

