
The performance optimization on TensorFlow
framework on Mobile GPU devices using OpenCL

Wei Cheng
Department of Electrical and Electronic Engineering

The University of Hong Kong (HKU)
Hong Kong, China
u3512488@hku.hk

Abstract —- The advancement of mobile computing
technology and the recent progress in AI have driven the
prosperity of edge computing, which means the
computation used to happen in the cloud is now shifting to
edge devices. Before the blossom of smart phones, mobile
devices merely served as a communication medium;
however, it’s so powerful and energy efficient now, it’s
capable of operating intensive AI computation within a
reasonable power budget. Yet, not all open-source AI
frameworks in the market support AI training on mobile
devices. In this paper, the feasibility of training a small AI
task, the MNIST handwritten dataset, using Tensorflow
framework on mobile CPU/GPU was demonstrated. To
further optimize the Tensorflow framework performance
on mobile devices. Benchmark programs were executed on
mobile GPU to better understand the underlying
architecture. Based on the benchmark results collected,
GPU optimization techniques were applied to conquer the
system bottleneck. As a result, the matrix multiplication
task was accelerated by 2.16x times compared to the
baseline performance.

Keywords: OpenCL, mobile GPU, Tensorflow

I. INTRODUCTION
A. Software — Tensorflow

 Tensorflow is an open-source numerical computation
library first introduced by Google in 2015. It’s popular in
both industry and research area because of its generic data
flow programming model which makes it extensible to
handle a wide range of neural network architecture. Among
all other open-source machine learning frameworks,
Tensorflow is chosen because of its popularity among the
developer community.

B. Hardware — Mobile GPU
 GPU was originally developed for better graphic
display on desktop computers. Unlike CPU, GPU has more
cores while each of them is less powerful and operates at
lower speed. Nonetheless, packing massive amount of
GPU cores on a chip gives great performance for graphics
because it needs simple computation for each pixel and
numerous pixels shall be processed for each frame, and
several frames per second. The characteristics of GPU
makes it naturally suitable for neural network AI task
because of its highly parallelizable nature.
 The computational power of mobile GPUs and desktop
GPUs are at different level. Mobile GPUs are restricted by
TDP (Thermal Design Power) since most mobile GPUs are
packed with CPU into a SoC (System On Chip), and they
have to share the TDP quota. Moreover, mobile GPUs have

to share the last level memory with CPU [1] while desktop
GPUs come with a piece of dedicated memory on chip
separated from CPU.

C. Programming model — OpenCL
 OpenCL is the industry driven SPMD (Single Program
Multiple Data) programming model for GPU [2]. Unlike
other mobile GPU programming framework such as
RenderScript used in RSTensorflow [3], OpenCL exposed
the underlying hardware to the developers which is more
flexible and extensible.

II. LITERATURE REVIEW
 Accelerating AI framework on mobile devices has
been a popular research topic. In this section, related
acceleration frameworks will be listed.
 RSTensorflow [3] leveraged the RenderScript
framework to accelerate the matrix multiplication and
convolution operations on Android devices and achieved 3
times speedup in Google Inception_v3 model inference
task. Qualcomm Snapdragon Neural Processing Engine
(SNPE) is the official framework from Qualcomm
supporting fast AI model inference on mobile devices
using mobile GPU; however, the implementation isn’t open
source and the training feature isn’t supported. Tensorflow
Lite was released by Google in Nov 2017. It accelerates
Tensorflow model inference process on mobile CPU. In
detail, pre-fused activation, and quantized data were added
to allow faster machine learning inference. Plus the AI
model file is smaller by introducing a new format called
“Flat Buffer”, which is a new serialization library similar
to the original one but without the need of parsing/
unpacking the text-based representation.

III. THEORETICAL PRINCIPLES
A. SPMD programming model

 GPU is faster in some applications because of the
parallel programming model. In OpenCL it’s called SPMD,
which means a group of work-items are executing the same
instruction in a lock step with each other. Therefore,
despite the fact that OpenCL compute units are slower than
normal CPU cores, the concept of latency hiding enables
GPU to achieve high throughput. By the time a GPU core
is waiting for a memory access to the memory system, it’s
able to switch to another thread and executes a few more
ALU instructions there until it encounters another memory
instruction. As the memory system returns the requested
data to the GPU core, it quickly switches back to the first
thread and moves on to the next instruction. In that case, a
GPU be kept busy all the time and the latency can be
hidden. Nonetheless, it’s possible for a GPU core to suffer
from low throughput because the kernel itself is memory

Page ! of !1 11

mailto:u3512488@hku.hk

bounded or the memory access pattern isn’t well supported
by the underlying memory system.

B. Optimal memory access pattern
 There’re some optimal memory access pattern in GPU
programming which best fit the underlying memory
system. First, coalesced memory access refer to the
capability of combining load store request from
neighboring work-items. The Adreno 5xx series GPU
supports coalesced load/store to local memory and
coalesced load to global memory [1]. Secondly,
vectorization refers to accessing memory in a vectorized
way for a single work-item to better utilize the memory
bandwidth. The best vectorization parameter is device
dependent. Experiments profiling the best vectorization
ratio on Adreno 540 GPU will be shown in this paper.
Thirdly, it’s a good practice to load or store a chunk of
bytes from the memory, and load/store memory address
should be 32 bites aligned [1]. Fourthly, local memory is
shared with all work items within the same work-group. A
kernel is faster with local memory because the access time
is lower than global memory.

IV. METHOD OF INVESTIGATION
 In order to apply the optimization technique to the
system. Deep understand of the underly hardware is
needed despite the fact that most mobile GPU architectures

are proprietary and close source. By executing existing or
self-designed benchmark programs on the mobile platform,
information crucial for optimization can be revealed.

A. Benchmark — LMBench
 LMBench [4] is a popular memory benchmark
program testing the memory access latency of CPU. This
benchmark is necessary because of the hardware
architecture of mobile GPU. Unlike traditional desktop
GPU with on-chip memory separated from the system
RAM, mobile GPU has to share the last level memory with
CPU. Therefore, by understanding the memory access
latency of the system RAM, one could have a rough
picture of memory latency in GPU. Which is a critical
parameter when it comes to the optimization of GPU
kernels.
 The original software was written for UNIX system.
It’s cross-compiled to Android platform with Android
NDK version 16 toolchain. The experiment was conducted
on both Snapdragon 835 and Snapdragon 820 SoC, results
are shown on Figure 1 and Figure 2 respectively.
 From Figure 1 and Figure 2, the CPU L1 cache access
time for S835 is ~1.2 ns, and S820 is ~1.4 ns. L2 cache
access time for S835 is ~11 ns, and S820 is ~10 ns. The
system RAM access time for S835 is ~145 ns, and S820 is
~170 ns. Due to the fact that the OpenCL global memory
on mobile GPU is the system RAM. Conclusion can be
made that the global memory in OpenCL memory model
on mobile GPU has access time equals to ~170 ns and
~145 ns for S820 and S835 respectively.

B. Benchmark — MixBench
 MixBench [5] is an OpenCL benchmark testing the
relationship between three factors (throughput, memory
bandwidth, operation intensity) on a GPU. As the
operation intensity grows, the kernel moves from a
memory bound kernel to a compute bound kernel. By
profiling these factors, one can use these parameters to
design a more efficient GPU kernel.
 This experiment was conducted on both Snapdragon
835 SoC with Adreno 540 GPU and Snapdragon 820 SoC
with Adreno 530 GPU. Integer operation, single precision
floating point operation (FP32), and half precision floating
point operation (FP16) were tested on both platforms.
 The Adreno 540 performance of FP32 is shown in
Figure 5, FP16 performance on Figure 6, Integer operation
performance on Figure 7. The Adreno 530 performance of
FP32 is shown in Figure 8, FP16 performance on Figure 9,
Integer operation performance on Figure 10. As the
operation intensity increases, the kernel is switching from a
memory bound kernel to a compute bound kernel. From
Figure 5 to 10, there’s a discontinuous point (marked by
red arrow) in each Figure, which represents a burst in both
computation and memory throughput. This is the sweet
region for a GPU kernel to yield maximum hardware
utilization by latency hiding.

C. Benchmark — OpenCL memory bandwidth test
 Inspired by the bandwidth tests in Qualcomm Adreno
SDK, this benchmark was built from scratch to measure
the memory transfer bandwidth between the host device
and OpenCL devices. Data consumed by an OpenCL
kernel should be first loaded into the GPU memory by the
`clEnqueueWriteBuffer` function in the OpenCL

Page ! of !2 11

Figure 2. is the memory random access latency for Snapdragon 820
platform. X-axis is the memory load size in byte. Y-axis is the memory
random access time in microsecond (us). Multiple data points on the
right show the stride size for random memory access. Stride sizes from
16 bytes to 1024 bytes were performed in this experiment.

1

10

100

1000

0.5 2 8 32 128 512 2048 8192

Ti
m
e	
(n
s)

Memory	 load	size	(byte)

Memory	Randrom	Access	Latency	(Snapdragon	820)

stride16

stride32

stride64

stride128

stride256

stride512

stride1024

Figure 1. is the memory random access latency for Snapdragon 835
platform. X-axis is the memory load size in byte. Y-axis is the memory
random access time in microsecond (us). Multiple data points on the
right show the stride size for random memory access. Stride sizes from
16 bytes to 1024 bytes were performed in this experiment.

1

10

100

1000

0.5 2 8 32 128 512 2048 8192

Ti
m
e	
(n
s)

Memory	 load	size	(byte)

Memory	Randrom	Access	Latency	(Snapdragon	835)

stride16

stride32

stride64

stride128

stride256

stride512

stride1024

programming model. Similarly, results computed by a
kernel should be read back to host using the
`clEnqueueReadBuffer` function. The data transfer time
between GPU and CPU consists of a large portion of
computational time. Thus, understanding such performance
is important for optimization. Memory bandwidth was
measured in the following scenarios. Data transfer from

host to OpenCL devices, from OpenCL devices to host,
and from an OpenCL device to another OpenCL device.
 Unlike the traditional desktop GPUs, the global
memory on mobile GPU is shared with system RAM. As a
result, the obtained results should be the transfer
bandwidth within the system RAM. Moreover, the OpenCL
buffer memory and image memory are handled differently
on Adreno GPU [1]. In this experiment, only OpenCL
buffer memory object was tested. Results of Adreno 540
GPU are shown in Figure 3, and results of Adreno 530
GPU are shown in Figure 4. Notice the difference between
Figure 3 and Figure 4, both Adreno 540 and Adreno 530
devices have similar host-to-device and device-to-host

Page ! of !3 11

Adreno 530 (Single Precision)

G
FL

O
PS

0.1

1

10

100

1000

GB/s
0.1 1 10 100

0.3
0.40.60.70.91.11.31.61.82.1

2.42.73.13.54.04.55.15.86.77.68.810.212.014.317.321.628.038.760.0
124.0

Figure 8. The performance of single precision floating point operation
on Adreno 530 GPU.

Figure 9. The performance of half precision floating point operation on
Adreno 530 GPU.

Adreno 530 (Half Precision)

G
FL

O
PS

0.1

1

10

100

1000

GB/s
0.1 1 10 100

0.3
0.5
0.81.11.51.82.22.73.13.64.2

4.85.56.27.18.09.110.311.713.315.317.620.424.028.634.743.256.077.3120.0
248.0

Adreno 530 (Integer Operation)

G
IO

PS

0.1

1

10

100

1000

GB/s
0.1 1 10 100

0.3
0.40.60.70.91.11.31.61.82.1

2.42.73.13.54.04.55.15.86.77.68.810.212.014.317.321.628.038.760.0
124.0

Figure 10. The performance of integer point operation on Adreno 530
GPU.

Adreno 540 (Single Precision)
G

FL
O

PS

0.1

1

10

100

1000

GB/s
0.1 1 10 100

0.30.40.60.70.91.11.31.61.82.1

2.42.73.13.54.04.55.15.86.77.68.810.212.014.317.321.628.038.760.0
124.0

Figure 5. The performance of single precision floating point operation
on Adreno 540 GPU. X-axis is the memory bandwidth in GB/s. The Y-
axis is the throughput (GFLOPS). The diameter of the data point is the
kernel operation intensity in FLOP/Byte. The number right next to the
data point is the operation intensity.

Figure 6. The performance of half precision floating point operation on
Adreno 540 GPU. X-axis is the memory bandwidth in GB/s. The Y-axis
is the throughput (GFLOPS). The diameter of the data point is the
kernel operation intensity in FLOP/Byte. The number right next to the
data point is the operation intensity.

Adreno 540 (Half Precision)

G
FL

O
PS

0.1

1

10

100

1000

GB/s
0.1 1 10 100

0.3
0.50.81.11.51.82.22.73.13.64.2

4.85.56.27.18.09.110.311.713.315.317.620.424.028.634.743.256.077.3120.0
248.0

Adreno 540 (Integer Operation)

G
IO

PS

0.1

1

10

100

1000

GB/s
0.1 1 10 100

0.1
0.3
0.40.60.70.91.11.31.61.82.1

2.42.73.13.54.04.55.15.86.77.68.810.212.014.317.321.628.038.760.0
124.0

Figure 7. The performance of integer operation on Adreno 540 GPU.
X-axis is the memory bandwidth in GB/s. The Y-axis is the throughput
(GIOPS). The diameter of the data point is the kernel operation
intensity in IOP/Byte. The number right next to the data point is the
operation intensity.

memory transfer bandwidth. Expectedly, the device-to-
device bandwidth on Adreno 540 GPU is half of those
between host and device because the data should be read
and sent back to OpenCL devices, the channel is shared so
half of the bandwidth is reasonable. Unexpectedly, the
device-to-device memory transfer bandwidth on Adreno
530 GPU is 2 to 3 times faster than host-to-device
bandwidth.

V. EXPERIMENT RESULTS
A. Experiment — CLBlast evaluation

 The CLBlast library is an open source OpenCL BLAS
library [6]. It’s designed to leverage the performance of
various kinds of OpenCL devices ranging from desktop
GPUs to mobile GPUs. The library consists of two parts,
the BLAS library which provides basic library algebra
operations, and a tuner that runs automated tests on an
OpenCL devices and generates the a combination of
parameters that gives the best performance. In
this experiment, only the GEMM (GEneral Matrix-to-
matrix Multiplication) functionality of the BLAS library
was tested.

A.1. Untuned version
 Notice that a database is embedded in the library to
select the appropriate set of parameters for the BLAS
OpenCL kernel at runtime. It first identifies the device
name and the device vendor by the OpenCL
`clGetDeviceInfo` function and uses the retuned value to
select a set of parameters for that device. The default set of
parameters for Adreno GPU is tuned for Adreno 330. The
performance of the untuned version is shown in Figure 11.

A.2.Tuned version

 As instructed by the CLBlast manual, tuning the
performance for a new OpenCL device is needed to find
the best set of parameters for the OpenCL kernel. An ideal
set of parameters for Adreno 540 was obtained by running
the tuner manually on the devices and the best set of
parameters were added to the database. The matrix
multiplication result of the tuned version CLBlast is shown
in Figure 12.

A.3.Tensorflow overhead

Page ! of !4 11

Figure 3. This chart shows the memory transfer bandwidth between
host device and OpenCL device on Adreno 540 GPU. X-axis is the
memory size being transferred in Mbyte. Y-axis is the measured
bandwidth in GB/s.

Adreno 540 Memory Bandwidth Test

Ba
nd

w
id

th
 (G

B/
s)

0

1

2

3

4

Transferred Memory Size (MByte)
0 175 350 525 700

device-to-device device-to-host host-to-device

Figure 4. This chart shows the memory transfer bandwidth between
host device and OpenCL device on Adreno 530 GPU. X-axis is the
memory size being transferred in Mbyte. Y-axis is the measured
bandwidth in GB/s.

Adreno 530 Memory Bandwidth Test

Ba
nd

w
id

th
 (G

B/
s)

0.00

1.75

3.50

5.25

7.00

Transferred Memory Size (MByte)
0 100 200 300 400

device-to-device device-to-host host-to-device

Figure 11. The FP32 square matrix multiplication performance
between CPU Eigen library and untuned CLBlast library. Different
colors show matrices of different size. Y-axis is the time needed in
microsecond (us).

FP32 square matrix multiplication performance between CPU
Eigen library and untuned CLBlast library

Ti
m

e
(u

s)

0

250000

500000

750000

1000000

cpu-Eigen-fp32 tf-Blast-fp32

16 32 64 128 256 512 1024 2048

FP32 square matrix multiplication performance between CPU
Eigen library and tuned CLBlast library

TI
m

e
(u

s)

0

250000

500000

750000

1000000

cpu-Eigen-fp32 tf-Blast-fp32-tuned

16 32 64 128 256 512 1024 2048

Figure 12. The FP32 square matrix multiplication performance
between CPU Eigen library and tuned CLBlast library. Different colors
show matrices of different size. Y-axis is the time needed in
microsecond (us).

Measurement of Tensorflow overhead

Ti
em

 (u
s)

0

250000

500000

750000

1000000

cl-Blast-fp32-tuned tf-Blast-fp32-tuned

16 32 64 128 256 512 1024 2048

Figure 13. This is chart shows the Tensorflow overhead when
incorporating the CLBLast library into the framework. Different colors
represent matrices of different size. Y-axis is the square matrix
multiplication time in microsecond (us). Left section is the CLBlast
program running as a normal OpenCL program. Right section is the
performance of incorporating it into the Tensorflow framework.

 To understand the overhead introduced by Tensorflow,
the computational time was measured by incorporating it
into the Tensorflow framework versus running it as a
normal OpenCL program. The results are shown in Figure
13.

A.4.Problem encountered
 Although a single run of Tensorflow MatMul operation
was successful on mobile GPU, continuous runs of such
operation resulted in unexpected situation. The program
halted with no error message thrown and the process was
killed by Android OS after several seconds. The reason of
such unexpected error remained unknown and required
further investigation.

B. Experiment —- OpenCL kernel optimization
 In this section, several OpenCL kernel optimization
techniques are tested. All experiments carried out here
were based on the `opencl-matmul` program.

B.1.Base line performance
 In this experiment, the simplest OpenCL MatMul
kernel (called version 1) was tested against the CPU
implementation. The performance is shown in Figure 14.
Kernel version 1 is considered as the baseline performance
because it’s the most straightforward matrix multiplication
kernel available. The programming methodology is as
follow, a work-item is responsible for an element in the
multiplied matrix. Each work-item performs row-column
element-wise multiplication independently and
sequentially just like normal human. The performance is
roughly 2~3 times slower than CPU with matrix size
equals to 1024.

B.2.Local memory
 The usage of local memory gives better performance
because the access latency is lower [1]. With this concept
in mind, a new kernel called MatMul kernel version 2, was
developed and used 16 by 16 2D local memory. The
performance improvement between kernel version 1 and
version 2 can be observed in Figure 15. The usage of local
memory dramatically decreases the number of bytes loaded
by a work-item. The performance is ~ 2 times faster than
kernel version 1 given matrix size equals to 1024.

B.3.Transpose before Multiplication
 Inspired by the matrix multiplication example in
Qualcomm Adreno SDK, given a matrix multiplication
task C=A*B, all matrices are stored in row-major arrays
(default configuration in Tensorflow). The access pattern
to matrix B isn’t aligned. Such access pattern is considered
bad because of low cache hit rate.
 The engineering challenge is that no matter how we
arrange both of the matrices (A and B), one of them must
be accessed in an unaligned manner. The solution to such
problem is to transpose matrix B before the matrix
multiplication. As a result, the access pattern to B_T
(transposed) matrix is aligned and the cache hit rate is
high. This optimization technique comes at the cost of
additional matrix transpose operation. From Snapdragon
profiler, the L2 cache read hit rate of this transposed-
before-multiply kernel reaches ~96% for a 64*64 square
matrix multiplication task.
 Also, due to the design limitation, this kernel is
designed to be a 1D kernel, each work-item is mapped to a

row in the multiplied matrix. Each work-item caches a
piece of data into the local memory (coalesced memory
access) and shared with all the work-items within the same
work-group to minimize the memory load operation per
work-item.
 In addition, this kernel fully utilizes the memory
bandwidth by vectorized load. The memory bandwidth of
Adreno 540 system is 128 bits, which equals to float4
datatype. Thus, all memory load operation in this kernel

Page ! of !5 11

FP32 square matrix multiplication performance between CPU
Eigen library and MatMul kernel 1

TI
m

e
(u

s)

0

250000

500000

750000

1000000

cpu-Eigen-fp32 tf-kernel 1-fp32

16 32 64 128 256 512 1024 2048

Figure 14. The FP32 square matrix multiplication performance
between CPU Eigen library and OpenCL kernel version 1. Different
colors show matrices of different size. Y-axis is the time needed in
microsecond (us).

FP32 square matrix multiplication performance between
kernel 1 and kernel 2

Va
lu

e
Ax

is

0

250000

500000

750000

1000000

tf-kernel 1-fp32 tf-kernel 2-fp32

16 32 64 128 256 512 1024 2048

Figure 15. The FP32 square matrix multiplication performance
between OpenCL kernel version 1 and OpenCL kernel version 2.
Different colors show matrices of different size. Y-axis is the time
needed in microsecond (us).

FP32 square matrix multiplication performance between
kernel v2 and kernel v3

Ti
m

e
(u

s)

0

250000

500000

750000

1000000

tf-kernel 2-fp32 tf-kernel 3-fp32-float4

16 32 64 128 256 512 1024 2048

Figure 16. The FP32 square matrix multiplication performance
between OpenCL kernel version 2 and OpenCL kernel version 3.
Different colors show matrices of different size. Y-axis is the time
needed in microsecond (us).

was designed to load 4 FP32 values from memory each
time.
 Each work-item writes to a single element in the
multiplied matrix because the coalesced memory store to
global memory isn’t supported on Adreno 5xx series GPU.
 With all optimization techniques mentioned above, the
performance between kernel version 2 and the newly
developed kernel 3 is shown in Figure 16. Out-of-
expectation, the new kernel is worse than kernel 2.

B.4.Vectorization

 The result from previous section gave no obvious
improvement. The vectorization ratio was further
increased to observed the differences. The vectorization
ratio was increased from 4 to 16 to observer the best ratio.
Results shown on Figure 17. The best vectorization ratio
float datatype for this kernel is 16.

B.5.Workgroup size
 Work group size is an OpenCL device dependent
parameter. It should be tuned for a new device because the
performance isn’t portable. The work group size is related
to the workload for each work-item. GPU stays idle most
of the time given suboptimal work-group size, the amount
of work distributed to GPU isn’t able to keep it busy all

the time. As a result, the advantage of latency hiding
cannot be achieved and the performance is worse. On the
contrary, given an over-estimated work group size, the
performance remains the same because the maximum
throughput has been reached. Further increase the work
group size gives no better performance. On Table 1,
optimal work group size for Adreno 540 GPU was found
for different vectorization ratio of kernel 3.

!
B.6.Different OpenCL memory object

 This optimization technique is specific to Adreno GPU
because of its GPU architecture. The optimization trick
was mentioned in a blog post on Qualcomm developer
network [7]. In order to fully utilize the existing cache
system, given a C=A*B matrix multiplication problem,
matrix A is allocated as an OpenCL image object while
matrix B is created as a normal OpenCL buffer. The
methodology of such operation is to fully utilize the L1
cache located on the texture processor. Ideally, with the
help of L1 cache, fewer memory traffic will pass to the
system memory and the overall performance can be
increased.
 However, replacing the existing OpenCL buffer object
with image object is troublesome because the carefully
designed kernel is incompatible. The compromised option
is to create an OpenCL image memory object from the
existing buffer object. The results of such operations is
shown on Figure 19.
 The Figure shows performance reduction. After careful
investigation into the GPU L1 and L2 cache hit rate, it’s
observed that it’s impossible to create a true OpenCL
image object from OpenCL buffer. The converted OpenCL
image object is treated as a normal buffer object and
nothing was loaded into the texture processor or L1 cache
memory. Perhaps a new MatMul kernel should be
developed to validate the possibility of such optimization
technique.

B.7.FP16 over FP32

Kernel name WG size

tf-kernel 3-fp32-float4 16

tf-kernel 3-fp32-float8 16

tf-kernel 3-fp32-float16 64

Table 1. The optimal work group size for MatMul kernel 3 with
different vectorization ratio.

Page ! of !6 11

FP32 square matrix multiplication performance of kernel v3
with different vectorization ratio

Ti
m

e
(u

s)

0

250000

500000

750000

1000000

tf-kernel 3 float4 tf-kernel 3 float8 tf-kernel 3 float16

16 32 64 128 256 512 1024 2048

Figure 17. The FP32 square matrix multiplication performance of
OpenCL kernel version 3 with different vectorization ratio. Different
colors show matrices of different size. Y-axis is the time needed in
microsecond (us).

FP32 square matrix multiplication performance of kernel v3
with OpenCL memory object

Ti
m

e
(u

s)

0

250000

500000

750000

1000000

tf-kernel 3-fp32-float4-clBuffer tf-kernel 3-fp32-float4-clImage

16 32 64 128 256 512 1024 2048

Figure 19. The FP32 square matrix multiplication performance of
OpenCL kernel version 3 with different OpenCL memory object.
Different colors show matrices of different size. Y-axis is the time
needed in microsecond (us).

Figure 18. The FP16 square matrix multiplication performance of
OpenCL kernel version 3 with different vectorization ratio. Different
colors show matrices of different size. Y-axis is the time needed in
microsecond (us).

FP16 square matrix multiplication performance of kernel v3
with different vectorization ratio

Ti
m

e
(u

s)

0

250000

500000

750000

1000000

tf-kernel 3-fp16-float4 tf-kernel 3-fp16-float8 tf-kernel 3-fp16-float16

16 32 64 128 256 512 1024 2048

 Claimed by Qualcomm, the throughput of FP16 is
doubled compared to FP32. Additionally, data size is half
of FP32, which further shorten the memory transfer time.
The purpose of this experiment is to investigate the
possibility of training the MNIST model on mobile GPU
with FP16 precision.
 A new class `clQualcommFP16Engine` was created
with the following modification. All FP32 data would be
converted to FP16 equivalent before the matrix
multiplication. Matrices filled with FP16 values were
passed to the MatMul kernel arguments. The FP16 kernel
is similar to the FP32 one with slight modification on
memory load/store operation. To save the effort of
conversion, a FP32 variable was used to store the results of
FP16 multiplication. Each element in the multiplied matrix
if of type FP32. The result is shown in Figure 18.
 On Figure 18, there’s minor improvement in speed but
the quality deteriorated as the number of matrices grew.
For square matrix multiplication of size greater than 64.
The per element accumulated error reached 0.1. Depending
on the range of matrices data, the error fluctuated and the
result wasn’t stable. Furthermore, FP16 MatMul
implementation cannot be applied to an AI training task
because multiple sequential matrix multiplication results in
unacceptable error. Despite the fact that this is the best
performance achieved, the training task in the following
section will be tested with a FP32 MatMul kernel.

B.8.Miscellaneous
 Other optimization techniques have been implemented
but no obvious performance improvement was observed. In
this section, the miscellaneous optimization techniques are
discussed including avoid the usage of `size_t` in kernel
code, avoid integer module operation, use fast integer
multiplication.
 The reason why `size_t` data type should be avoided in
an OpenCL kernel is the complexity of computing 64 bits
integers. The `size_t` datatype will be promoted
automatically by the compiler to 64 bits integer on 64-bit
OS. Adreno GPU has to emulate a 64 bits integer with two
32 bits registers. The additional resource consumption is
unnecessary if it can be replaced with other datatype.
 All integer variables in the MatMul kernel was defined
with the smallest functional datatype. The resource
allocated for a variable just meets the required range of
operation. For instance, it’s impossible for matrices size to
exceed 2^16=65535. Thus, all related variables were
defined with the `cl_ushort` datatype, which to some
extent, might reduce the computation and memory transfer
time. Nonetheless, no obvious improvement was observed.
 Integer module operation is expensive and another
way to get the same result is binary AND operation. A mod
4 operation is equivalent to a binary AND operation with 3
(0x11).
 Integer multiplication is expensive in Adreno GPU. If
the expected result falls within the range of [-2^23, 2^23-1]
(singed) or [0, 2^24-1] (unsigned), the `mul24` instruction
is faster because fewer bits are calculated. However, the
replacement of the `mul24` instruction gave minor
performance improvement.

C. Training MNIST dataset with various AI models

 With all MatMul OpenCL kernel tested in the previous
section, training an AI model on mobile GPU is feasible
and the result will be discussed in this section.

C.1.The design of pure training program
 The purpose of this pure training program is to
measure the time needed for training. Batches of training
data will be loaded into Tensorflow runtime for
computation. After the training process is done, the time
passed will be calculated. Eventually, the testing samples
will be loaded for 100 samples at a time. The overall
accuracy is accumulated and averaged for the final model
accuracy.

C.2.The design of training logger program
 During the development process, it’s hard to debug an
AI training program without understanding the current

Page ! of !7 11

Figure 21. The DNN training accuracy on desktop computer.

Figure 22. The MLP training accuracy on mobile CPU.

Figure 20. The MLP training accuracy on desktop computer.

Figure 23. The DNN training accuracy on mobile CPU.

training accuracy. This program is designed to probe the
trained model after a batch of training data is used to
trained the model. The probed accuracy will be logged on
mobile devices and viewed on desktop computer to inspect
the training progress over iterations. Expectedly, this
program is time consuming because testing a model for
each training batch is computationally expensive. In the
following discussion, the training progress on desktop
computer is set as the ground truth for comparison.

C.3.Training accuracy
 Figure 20 and Figure 21 show the MLP and DNN
model training progress on desktop CPU. Figure 22 (MLP)
and Figure 23 (DNN) show the training progress on mobile
CPU. Figure 24 (MLP) and Figure 25 (DNN) show the
training progress on mobile GPU. From Figure 20 to 28,
it’s obvious that the training results on mobile GPU is
equivalent to the results obtained from desktop computer
or mobile CPU. Which further proves that training on
mobile GPU is successful.

C.4.Training time
 The pure training performance on mobile CPU is
shown in Table 3. The pure training performance on mobile
GPU with different MatMul kernel implementations are
shown from Table 4 to 6. Notice that the batch size is
different for MLP and DNN model because the Tensorflow
optimizer cannot reach a convergent result given large
batch size in MLP model.
 Observed from the results, the training accuracy are
the same for both mobile CPU and GPU. The performance
of CPU is still way faster than mobile GPU. The
explanation for such phenomenon will be discussed in the
discussion section.
 Compared the results on Table 5 and 6, The DNN
training time decreased by 26% because of higher
vectorization ratio. At the same time, the MLP training

Page ! of !8 11

Figure 24. The MLP training accuracy on mobile GPU.

Figure 25. The DNN training accuracy on mobile GPU.

Table 3. Training performance on mobile CPU

Model Name Overall
Accuracy (%)

Training Time
(s)

Batch Size

MLP 78.3435 5.34335 100

DNN 96.7990 216.708 1000
Table 4. Training performance on mobile GPU

Model Name Overall
Accuracy (%)

Training Time
(s)

Batch Size

Kernel Used `MatMul_TN_1D_Fp32_Float4` +
`MatTrans_1D_Fp32_Float4`

MLP 79.2828 56.3333 100

DNN 96.7909 508.305 1000

Table 5. Training performance on mobile GPU

Model Name Overall
Accuracy (%)

Training Time
(s)

Batch Size

Kernel Used MatMul_TN_1D_Fp32_Float8` +
`MatTrans_1D_Fp32_Float8

MLP 80.0404 56.5589 100

DNN 97.2151 527.089 1000

Table 6. Training performance on mobile GPU

Model Name Overall
Accuracy (%)

Training Time
(s)

Batch Size

Kernel Used MatMul_TN_1D_Fp32_Float16` +
`MatTrans_1D_Fp32_Float16

MLP 78.8788 53.1919 100

DNN 96.6364 388.855 1000

Throughput of mobile CPU/GPU

G
FL

PO
S

0

2

4

6

8

Matrix Size
16 32 64 128 256 512 1024 2048

Snapdragon 835 Adreno 540 GPU

Figure 26. The throughput of Snapdragon 835 CPU and Adreno
540 GPU in square matrix multiplication task. X-axis is the size
of the matrix. Y-axis is the throughput in GFLOPS.

time decreased by merely 6%. Figure 27. visualizes the
results of training time on mobile GPU.

D. GPU Computing capability:
 This section explores the computing capability of
mobile GPU/CPU by measuring the floating point
operations per second in the square matrix multiplication
benchmark.
 From GeekBench [8], the throughput for Snapdragon
835 CPU is roughly about 11.5 GFLOPS. Based on our
experiments, the throughput of was calculated as follow.
For a square matrices multiplication task, the number of
floating point operations roughly equals to N^3. As a
result, the computed throughput is shown on Figure 26.
The result obtained is slightly lower than GeekBench’s
measurement, the maximum throughput for CPU is ~7
GFLOPS, and GPU is ~ 6 GFLOPS.

VI.DISCUSSION OF RESULTS
A. Experiment — CLBlast evaluation

 The tuned version of CLBlast OpenCL BLAS library
is by far the fastest kernel tested on Adreno 540 GPU. In
Figure 12. the performance of the tuned CLBlast library is
slower than CPU if matrix size is smaller than 1024. The
reason is as follow, profiled by the Snapdragon profiler, the
actual computation consists of a small portion of time. A
large portion of time (1272428 us ~= 1.2 sec) was spent on
the compilation of OpenCL kernel source code. Since the
performance measurements in Figure 12. were averaged
for 10 iterations. As a result, given the actual computation
consists of a small portion of time (i.e. matrix size < 1024),
the kernel compilation time boosts up the average time
significantly.
 The compilation of BLAS OpenCL kernel source code
in CLBlast library could be further identified by the
measurement of Tensorflow overhead in Figure 13. The
excessive time is contributed by the compilation of kernel
source code. The CLBlast library is designed in a smart
way such that the compilation process is needed only for
the first run. The compiled binary will be cached in the
system and a new OpenCL program will be created from
binary instead of from source.

B. Experiment —- OpenCL kernel optimization
 Among all kernels implemented in this paper, the 1D
kernel with `transpose before multiply` method gives the
best performance. For different ratio of vectorization, the

float16 data type is the most efficient. In additional,
miscellaneous optimization techniques were applied.
Notice that not all optimization strategy was integrated
successfully, changing from FP32 multiplication FP16
wasn’t successful because of the deteriorated precision,
and replacing memory object from OpenCL buffer with
image gave worse performance. Combined, MatMul kernel
version 3 (FP32) with vectorization ratio of 16 gives the
best performance among all manually designed kernels
(CLBlast excluded). The performance comparison is
shown on Figure 28. Still, mobile GPU is slower than
mobile CPU. However, some additional factors should be
taken into considerations including the theoretical
throughput of mobile CPU/GPU, and the memory transfer
time between host and OpenCL device.

C. Training MNIST dataset with various AI models
 Compared with the MNIST training results on desktop
computer, mobile CPU or GPU is capable of reaching the
same model accuracy. The difference of growth rate
between mobile platform and desktop platform is
unexpected, the training accuracy increases dramatically
on desktop computer while it grows slowly on mobile
platform. Perhaps there’re some API level optimization for
Tensorflow Python API that causes the difference.

VII.LIMITATION
 The limitations of this paper is separated into software
part and hardware part.
 For the software design of clMatMulEngine, an
OpenCL context object is created for each matrix
multiplication operation in Tensorflow runtime. Many
OpenCL host side objects are created and released after
computation. Such design choice isn’t efficient because a
context object, device object, command queue object can
be reused in the next operation. In other words, the
OpenCL host side objects should be kept for the same
OpenCL devices. Host-side initialization should only be
done once for a device. During the research phase of this
project, such limitation was identified. The original
initiative was to build a well-integrated OpenCL version of
Tensorflow. The plan was cancelled because the estimated
amount of engineering work is beyond the workload of this
project. Such operation requires deep integration of
OpenCL into the Tensorflow framework.

Page ! of !9 11

MNIST training time on mobile GPU

Ti
m

e
(s

)

0

150

300

450

600

tf-kernel3-fp32-float4 float8 float16 CPU

MLP DNN MLP DNN MLP DNN MLP DNN

MLP DNN

Figure 27. The MNIST training performance. Blue bar represents the
time for MLP, and green for DNN. Y-axis is the time needed in second .

FP32 Performance comparison between CPU & MatMul kernel
v3 with float16 vectorization

Ti
m

e
(u

s)

0

1000000

2000000

3000000

4000000

cpu-Eigen-fp32 tf-kernel 3-fp32-float16

16 32 64 128 256 512 10242048 16 32 64 128 256 512 10242048

16 32 64 128 256 512 1024
2048

Figure 28. The FP32 square matrix multiplication performance of
OpenCL kernel version 3 with float16 vectorization and CPU.
Different colors show matrices of different size. Y-axis is the time
needed in microsecond (us).

 For the hardware limitation, the closed source
architecture of Adreno GPU makes it challenging to verify
the optimization strategy. For instance, the info about the
size of the on-chip local memory, the size of L2 cache, the
size of L1 cache aren’t revealed by Qualcomm.

VIII.ACKNOWLEDGEMENT
 We would like to give special thanks to Prof. C.L.
Wang, Department of Computer Science, the University of
Hong Kong for his guidance and help. The former intern
张启萌 who shared his work on the Caffe library on
Snapdragon 820 platform. PhD student Pengfei Xu who
shared his experience on deep learning benchmark on
GPU. Final year student Ji Zhuoran who shared his
experience on porting Caffe library to mobile GPU.
Student Liu Weizhi who shared his work on GPU kernel
stretching and slicing on NVIDIA GPU. We would like to
give thanks with whole heart to anyone who contribute and
share idea with us.

IX.CONCLUSION
 The advancement of computing power on mobile
devices and the recent progress in AI push the computation
toward the users’ end. In this report, the possibility of
training AI models on mobile devices was explored by
embedding OpenCL code into the Tensorflow framework.
Also multiple benchmarks were tested on the mobile
platform to understand the characteristics of the
heterogeneous computing platform. The training and
inference processes on mobile devices were accelerated by
off-loading the intensive computation from mobile CPU to
GPU. Also, training a MNIST dataset on mobile GPU was
successful. Despite the matrix multiplication task was
slower on mobile GPU. The best version of the manually
designed OpenCL kernel outperformed the baseline
performance by 2.16 times for square matrix
multiplication of size 1024. Further investigation is needed
to unveil the underlying hardware architecture of mobile
GPU, and explore the capability of mobile AI applications.  

Page ! of !10 11

X. REFERENCE
1. Qualcomm Snapdragon(TM) Mobile Platform
OpenCL General Programming and Optimization. 2017.
2. Khronos. The OpenCL Specification. 2018; Available
from: https://www.khronos.org/registry/OpenCL/specs/
opencl-2.2.html.
3. Moustafa, A., et al., RSTensorFlow: GPU Enabled
TensorFlow for Deep Learning on Commodity Android
Devices. Proceedings of the 1st International Workshop on
Deep Learning for Mobile Systems and Applications.
2017: ACM.
4. McVoy, L.W. and C. Staelin. lmbench: Portable Tools
for Performance Analysis. in USENIX annual technical
conference. 1996. San Diego, CA, USA.
5. Konstantinidis, E. and Y. Cotronis, A quantitative
roofline model for GPU kernel performance estimation
using micro-benchmarks and hardware metric profiling.
Journal of Parallel and Distributed Computing, 2017(107):
p. 37-56.
6. Nugteren, C., CLBLast: A tuned openCL BLAS library.
arXiv preprint arXiv:1705.05249, 2017.
7. Qualcomm. Matrix Multiply on Adreno GPUs. 2016;
Available from: https://developer.qualcomm.com/blog/
matrix-multiply-adreno-gpus-part-1-opencl-optimization.
8. GeekBench. The Qualcomm Snapdragon 835
Performance Preview. Available from: https://
www.anandtech.com/show/11201/qualcomm-
snapdragon-835-performance-preview/2.

Page ! of !11 11

