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Abstract —- The advancement of mobile computing 
technology and the recent progress in AI have driven the 
prosperity of edge computing, which means the 
computation used to happen in the cloud is now shifting to 
edge devices. Before the blossom of smart phones, mobile 
devices merely served as a communication medium; 
however, it’s so powerful and energy efficient now, it’s 
capable of operating intensive AI computation within a 
reasonable power budget. Yet, not all open-source AI 
frameworks in the market support AI training on mobile 
devices. In this paper, the feasibility of training a small AI 
task, the MNIST handwritten dataset, using Tensorflow 
framework on mobile CPU/GPU was demonstrated. To 
further optimize the Tensorflow framework performance 
on mobile devices. Benchmark programs were executed on 
mobile GPU to better understand the underlying 
architecture. Based on the benchmark results collected, 
GPU optimization techniques were applied to conquer the 
system bottleneck. As a result, the matrix multiplication 
task was accelerated by 2.16x times compared to the 
baseline performance. 
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I. INTRODUCTION  
A. Software — Tensorflow  

 Tensorflow is an open-source numerical computation 
library first introduced by Google in 2015. It’s popular in 
both industry and research area because of its generic data 
flow programming model which makes it extensible to 
handle a wide range of neural network architecture. Among 
all other open-source machine learning frameworks, 
Tensorflow is chosen because of its popularity among the 
developer community.  

B.  Hardware — Mobile GPU 
 GPU was originally developed for better graphic 
display on desktop computers. Unlike CPU, GPU has more 
cores while each of them is less powerful and operates at 
lower speed. Nonetheless, packing massive amount of 
GPU cores on a chip gives great performance for graphics 
because it needs simple computation for each pixel and 
numerous pixels shall be processed for each frame, and 
several frames per second. The characteristics of  GPU 
makes it naturally suitable for neural network AI task 
because of its highly parallelizable nature. 
 The computational power of mobile GPUs and desktop 
GPUs are at different level. Mobile GPUs are restricted by 
TDP (Thermal Design Power) since most mobile GPUs are 
packed with CPU into a SoC (System On Chip), and they 
have to share the TDP quota. Moreover, mobile GPUs have 

to share the last level memory with CPU [1] while desktop 
GPUs come with a piece of dedicated memory on chip 
separated from CPU.  

C. Programming model — OpenCL  
 OpenCL is the industry driven SPMD (Single Program 
Multiple Data) programming model for GPU [2]. Unlike 
other mobile GPU programming framework such as 
RenderScript used in RSTensorflow [3], OpenCL exposed 
the underlying hardware to the developers which is more 
flexible and extensible.  

II. LITERATURE REVIEW  
 Accelerating AI framework on mobile devices has 
been a popular research topic. In this section, related 
acceleration frameworks will be listed.  
 RSTensorflow [3] leveraged the RenderScript 
framework to accelerate the matrix multiplication and 
convolution operations on Android devices and achieved 3 
times speedup in Google Inception_v3 model inference 
task. Qualcomm Snapdragon Neural Processing Engine 
(SNPE) is the official framework from Qualcomm 
supporting fast AI model inference on mobile devices 
using mobile GPU; however, the implementation isn’t open 
source and the training feature isn’t supported. Tensorflow 
Lite  was released by Google  in Nov 2017. It accelerates 
Tensorflow model inference process on mobile CPU. In 
detail, pre-fused activation, and quantized data were added 
to allow faster machine learning inference. Plus the AI 
model file is smaller by introducing a new format called 
“Flat Buffer”, which is a new serialization library similar 
to the original one but without the need of parsing/
unpacking the text-based representation. 

III. THEORETICAL PRINCIPLES  
A. SPMD programming model    

 GPU is faster in some applications because of the 
parallel programming model. In OpenCL it’s called SPMD, 
which means a group of work-items are executing the same 
instruction in a lock step with each other. Therefore, 
despite the fact that OpenCL compute units are slower than 
normal CPU cores, the concept of latency hiding enables 
GPU to achieve high throughput. By the time a GPU core 
is waiting for a memory access to the memory system, it’s 
able to switch to another thread and executes a few more 
ALU instructions there until it encounters another memory 
instruction. As the memory system returns the requested 
data to the GPU core, it quickly switches back to the first 
thread and moves on to the next instruction. In that case, a 
GPU be kept busy all the time and the latency can be 
hidden. Nonetheless, it’s possible for a GPU core to suffer 
from low throughput because the kernel itself is memory 
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bounded or the memory access pattern isn’t well supported 
by the underlying memory system.  

B. Optimal memory access pattern     
 There’re some optimal memory access pattern in GPU 
programming which best fit the underlying memory 
system. First, coalesced memory access refer to the 
capability of combining load store request from 
neighboring work-items. The Adreno 5xx series GPU 
supports coalesced load/store to local memory and 
coalesced load to global memory [1]. Secondly, 
vectorization refers to accessing memory in a vectorized 
way for a single work-item to better utilize the memory 
bandwidth. The best vectorization parameter is device 
dependent. Experiments profiling the best vectorization 
ratio on Adreno 540 GPU will be shown in this paper. 
Thirdly, it’s a good practice to load or store a chunk of 
bytes from the memory, and load/store memory address 
should be 32 bites aligned [1]. Fourthly, local memory is 
shared with all work items within the same work-group. A 
kernel is faster with local memory because the access time 
is lower than global memory.   

IV. METHOD OF INVESTIGATION  
 In order to apply the optimization technique to the 
system. Deep understand of the underly hardware is 
needed despite the fact that most mobile GPU architectures 

are proprietary and close source. By executing existing or 
self-designed benchmark programs on the mobile platform, 
information crucial for optimization can be revealed.     

A.  Benchmark — LMBench 
 LMBench [4] is a popular memory benchmark 
program testing the memory access latency of CPU. This 
benchmark is necessary because of the hardware 
architecture of mobile GPU. Unlike traditional desktop 
GPU with on-chip memory separated from the system 
RAM, mobile GPU has to share the last level memory with 
CPU. Therefore, by understanding the memory access 
latency of the system RAM, one could have a rough 
picture of memory latency in GPU. Which is a critical 
parameter when it comes to the optimization of GPU 
kernels. 
 The original software was written for UNIX system. 
It’s cross-compiled to Android platform with Android 
NDK version 16 toolchain. The experiment was conducted 
on both Snapdragon 835 and Snapdragon 820 SoC, results 
are shown on Figure 1 and Figure 2 respectively.  
 From Figure 1 and Figure 2, the CPU L1 cache access 
time for S835 is ~1.2 ns, and S820 is ~1.4 ns. L2 cache 
access time for S835 is ~11 ns, and S820 is ~10 ns. The 
system RAM access time for S835 is ~145 ns, and S820 is 
~170 ns. Due to the fact that the OpenCL global memory 
on mobile GPU is the system RAM. Conclusion can be 
made that the global memory in OpenCL memory model 
on mobile GPU has access time equals to ~170 ns and 
~145 ns for S820 and S835 respectively.   

B. Benchmark — MixBench 
 MixBench [5] is an OpenCL benchmark testing the 
relationship between three factors ( throughput, memory 
bandwidth, operation intensity ) on a GPU. As the 
operation intensity grows, the kernel moves from a 
memory bound kernel to a compute bound kernel. By 
profiling these factors, one can use these parameters to 
design a more efficient GPU kernel.   
 This experiment was conducted on both Snapdragon 
835 SoC with Adreno 540 GPU and Snapdragon 820 SoC 
with Adreno 530 GPU. Integer operation, single precision 
floating point operation (FP32), and half precision floating 
point operation (FP16) were tested on both platforms.  
 The Adreno 540 performance of FP32 is shown in 
Figure 5, FP16 performance on Figure 6, Integer operation 
performance on Figure 7. The Adreno 530 performance of 
FP32 is shown in Figure 8, FP16 performance on Figure 9, 
Integer operation performance on Figure 10. As the 
operation intensity increases, the kernel is switching from a 
memory bound kernel to a compute bound kernel. From 
Figure 5 to 10, there’s a discontinuous point (marked by 
red arrow) in each Figure, which represents a burst in both 
computation and memory throughput. This is the sweet 
region for a GPU kernel to yield maximum hardware 
utilization by latency hiding.  

C. Benchmark — OpenCL memory bandwidth test 
 Inspired by the bandwidth tests in Qualcomm Adreno 
SDK, this benchmark was built from scratch to measure 
the memory transfer bandwidth between the host device 
and OpenCL devices. Data consumed by an OpenCL 
kernel should be first loaded into the GPU memory by the 
`clEnqueueWriteBuffer` function in the OpenCL 
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Figure 2. is the memory random access latency for Snapdragon 820 
platform. X-axis is the memory load size in byte. Y-axis is the memory 
random access time in microsecond (us). Multiple data points on the 
right show the stride size for random memory access. Stride sizes from 
16 bytes to 1024 bytes were performed in this experiment.
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Figure 1. is the memory random access latency for Snapdragon 835 
platform. X-axis is the memory load size in byte. Y-axis is the memory 
random access time in microsecond (us). Multiple data points on the 
right show the stride size for random memory access. Stride sizes from 
16 bytes to 1024 bytes were performed in this experiment.
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programming model. Similarly, results computed by a 
kernel should be read back to host using the 
`clEnqueueReadBuffer` function. The data transfer time 
between GPU and CPU consists of a large portion of 
computational time. Thus, understanding such performance 
is important for optimization. Memory bandwidth was 
measured in the following scenarios. Data transfer from 

host to OpenCL devices, from OpenCL devices to host, 
and from an OpenCL device to another OpenCL device.  
 Unlike the traditional desktop GPUs, the global 
memory on mobile GPU is shared with system RAM. As a 
result, the obtained results should be the transfer 
bandwidth within the system RAM. Moreover, the OpenCL 
buffer memory and image memory are handled differently 
on Adreno GPU [1]. In this experiment, only OpenCL 
buffer memory object was tested. Results of Adreno 540 
GPU are shown in Figure 3, and results of Adreno 530 
GPU are shown in Figure 4. Notice the difference between 
Figure 3 and Figure 4, both Adreno 540 and Adreno 530 
devices have similar host-to-device and device-to-host 
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Figure 8. The performance of single precision floating point operation 
on Adreno 530 GPU.

Figure 9. The performance of half precision floating point operation on 
Adreno 530 GPU.
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Adreno 530 (Integer Operation)
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Figure 10. The performance of integer point operation on Adreno 530 
GPU.
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Figure 5. The performance of single precision floating point operation 
on Adreno 540 GPU. X-axis is the memory bandwidth in GB/s. The Y-
axis is the throughput (GFLOPS). The diameter of the data point is the 
kernel operation intensity in FLOP/Byte. The number right next to the 
data point is the operation intensity.

Figure 6. The performance of half precision floating point operation on 
Adreno 540 GPU. X-axis is the memory bandwidth in GB/s. The Y-axis 
is the throughput (GFLOPS). The diameter of the data point is the 
kernel operation intensity in FLOP/Byte. The number right next to the 
data point is the operation intensity.
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Adreno 540 (Integer Operation)
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Figure 7. The performance of integer operation on Adreno 540 GPU. 
X-axis is the memory bandwidth in GB/s. The Y-axis is the throughput 
(GIOPS). The diameter of the data point is the kernel operation 
intensity in IOP/Byte. The number right next to the data point is the 
operation intensity.



memory transfer bandwidth. Expectedly, the device-to-
device bandwidth on Adreno 540 GPU is half of those 
between host and device because the data should be read 
and sent back to OpenCL devices, the channel is shared so 
half of the bandwidth is reasonable. Unexpectedly, the 
device-to-device memory transfer bandwidth on Adreno 
530 GPU is 2 to 3 times faster than host-to-device 
bandwidth.    

V. EXPERIMENT RESULTS  
A. Experiment — CLBlast evaluation  

 The CLBlast library is an open source OpenCL BLAS 
library [6]. It’s designed to leverage the performance of 
various kinds of OpenCL devices ranging from desktop 
GPUs to mobile GPUs. The library consists of two parts, 
the BLAS library which provides basic library algebra 
operations, and a tuner that runs automated tests on an 
OpenCL devices and generates the a combination of 
parameters that gives the best performance. In  
this experiment, only the GEMM (GEneral Matrix-to-
matrix Multiplication) functionality of the BLAS library 
was tested.     

A.1. Untuned version  
 Notice that a database is embedded in the library to 
select the appropriate set of parameters for the BLAS 
OpenCL kernel at runtime. It first identifies the device 
name and the device vendor by the OpenCL 
`clGetDeviceInfo` function and uses the retuned value to 
select a set of parameters for that device. The default set of 
parameters for Adreno GPU is tuned for Adreno 330. The 
performance of the untuned version is shown in Figure 11.  

A.2.Tuned version  

 As instructed by the CLBlast manual, tuning the 
performance for a new OpenCL device is needed to find 
the best set of parameters for the OpenCL kernel. An ideal 
set of parameters for Adreno 540 was obtained by running 
the tuner manually on the devices and the best set of 
parameters were added to the database. The matrix 
multiplication result of the tuned version CLBlast is shown 
in Figure 12.  

A.3.Tensorflow overhead  
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Figure 3. This chart shows the memory transfer bandwidth between 
host device and OpenCL device on Adreno 540 GPU. X-axis is the 
memory size being transferred in Mbyte. Y-axis is the measured 
bandwidth in GB/s.  
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Figure 4. This chart shows the memory transfer bandwidth between 
host device and OpenCL device on Adreno 530 GPU. X-axis is the 
memory size being transferred in Mbyte. Y-axis is the measured 
bandwidth in GB/s.  
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Figure 11. The FP32 square matrix multiplication performance 
between CPU Eigen library and untuned CLBlast library. Different 
colors show matrices of different size. Y-axis is the time needed in 
microsecond (us).  
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Figure 12. The FP32 square matrix multiplication performance 
between CPU Eigen library and tuned CLBlast library. Different colors 
show matrices of different size. Y-axis is the time needed in 
microsecond (us).  
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Figure 13. This is chart shows the Tensorflow overhead when 
incorporating the CLBLast library into the framework. Different colors 
represent matrices of different size. Y-axis is the square matrix 
multiplication time in microsecond (us).  Left section is the CLBlast 
program running as a normal OpenCL program. Right section is the 
performance of incorporating it into the Tensorflow framework. 



 To understand the overhead introduced by Tensorflow, 
the computational time was measured by incorporating it 
into the Tensorflow framework versus running it as a 
normal OpenCL program. The results are shown in Figure 
13.  

A.4.Problem encountered  
 Although a single run of Tensorflow MatMul operation  
was successful on mobile GPU, continuous runs of such 
operation resulted in unexpected situation. The program 
halted with no error message thrown and the process was 
killed by Android OS after several seconds. The reason of 
such unexpected error remained unknown and required 
further investigation.   

B. Experiment —- OpenCL kernel optimization  
 In this section, several OpenCL kernel optimization 
techniques are tested. All experiments carried out here 
were based on the `opencl-matmul`  program.  

B.1.Base line performance 
 In this experiment, the simplest OpenCL MatMul 
kernel (called version 1) was tested against the CPU 
implementation. The performance is shown in Figure 14. 
Kernel version 1 is considered as the baseline performance 
because it’s the most straightforward matrix multiplication 
kernel available. The programming methodology is as 
follow, a work-item is responsible for an element in the 
multiplied matrix. Each work-item performs row-column 
element-wise multiplication independently and 
sequentially just like normal human. The performance is 
roughly 2~3 times slower than CPU with matrix size 
equals to 1024.   

B.2.Local memory  
 The usage of local memory gives better performance 
because the access latency is lower [1]. With this concept 
in mind, a new kernel called MatMul kernel version 2, was 
developed and used 16 by 16 2D local memory. The 
performance improvement between kernel version 1 and 
version 2 can be observed in Figure 15. The usage of local 
memory dramatically decreases the number of bytes loaded 
by a work-item. The performance is ~ 2 times faster than 
kernel version 1 given matrix size equals to 1024.   

B.3.Transpose before Multiplication  
 Inspired by the matrix multiplication example in 
Qualcomm Adreno SDK, given a matrix multiplication 
task C=A*B, all matrices are stored in row-major arrays 
( default configuration in Tensorflow ). The access pattern 
to matrix B isn’t aligned. Such access pattern is considered 
bad because of low cache hit rate.  
 The engineering challenge is that no matter how we 
arrange both of the matrices (A and B), one of them must 
be accessed in an unaligned manner. The solution to such 
problem is to transpose matrix B before the matrix 
multiplication. As a result, the access pattern to B_T 
(transposed) matrix is aligned and the cache hit rate is 
high. This optimization technique comes at the cost of 
additional matrix transpose operation. From Snapdragon 
profiler, the L2 cache read hit rate of this transposed-
before-multiply kernel reaches ~96% for a 64*64 square 
matrix multiplication task.   
 Also, due to the design limitation, this kernel is 
designed to be a 1D kernel, each work-item is mapped to a 

row in the multiplied matrix. Each work-item caches a 
piece of data into the local memory (coalesced memory 
access) and shared with all the work-items within the same 
work-group to minimize the memory load operation per 
work-item. 
 In addition, this kernel fully utilizes the memory 
bandwidth by vectorized load. The memory bandwidth of 
Adreno 540 system is 128 bits, which equals to float4 
datatype. Thus, all memory load operation in this kernel 
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Figure 14. The FP32 square matrix multiplication performance 
between CPU Eigen library and OpenCL kernel version 1. Different 
colors show matrices of different size. Y-axis is the time needed in 
microsecond (us).  
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Figure 15. The FP32 square matrix multiplication performance 
between OpenCL kernel version 1 and OpenCL kernel version 2. 
Different colors show matrices of different size. Y-axis is the time 
needed in microsecond (us).  
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Figure 16. The FP32 square matrix multiplication performance 
between OpenCL kernel version 2 and OpenCL kernel version 3. 
Different colors show matrices of different size. Y-axis is the time 
needed in microsecond (us).  



was designed to load 4 FP32 values from memory each 
time.  
 Each work-item writes to a single element in the 
multiplied matrix because the coalesced memory store to 
global memory isn’t supported on Adreno 5xx series GPU.  
 With all optimization techniques mentioned above, the 
performance between kernel version 2 and the newly 
developed kernel 3 is shown in Figure 16. Out-of-
expectation, the new kernel is worse than kernel 2.  

B.4.Vectorization  

 The result from previous section gave no obvious 
improvement. The vectorization ratio was further 
increased to observed the differences. The vectorization 
ratio was increased from 4 to 16 to observer the best ratio. 
Results shown on Figure 17. The best vectorization ratio 
float datatype for this kernel is 16. 

B.5.Workgroup size  
 Work group size is an OpenCL device dependent 
parameter. It should be tuned for a new device because the 
performance isn’t portable. The work group size is related 
to the workload for each work-item. GPU stays idle most 
of the time given suboptimal work-group size, the amount 
of work distributed to GPU isn’t able to keep it busy all 

the time. As a result, the advantage of latency hiding 
cannot be achieved and the performance is worse. On the 
contrary, given an over-estimated work group size, the 
performance remains the same because the maximum 
throughput has been reached. Further increase the work 
group size gives no better performance. On Table 1, 
optimal work group size for Adreno 540 GPU was found 
for different vectorization ratio of kernel 3. 

!  
B.6.Different OpenCL memory object  

 This optimization technique is specific to Adreno GPU 
because of its GPU architecture. The optimization trick 
was mentioned in a blog post on Qualcomm developer 
network [7]. In order to fully utilize the existing cache 
system, given a C=A*B matrix multiplication problem, 
matrix A is allocated as an OpenCL image object while 
matrix B is created as a normal OpenCL buffer. The 
methodology of such operation is to fully utilize the L1 
cache located on the texture processor. Ideally, with the 
help of L1 cache, fewer memory traffic will pass to the 
system memory and the overall performance can be 
increased.  
 However, replacing the existing OpenCL buffer object 
with image object is troublesome because the carefully 
designed kernel is incompatible. The compromised option 
is to create an OpenCL image memory object from the 
existing buffer object. The results of such operations is 
shown on Figure 19.   
 The Figure shows performance reduction. After careful 
investigation into the GPU L1 and L2 cache hit rate, it’s 
observed that it’s impossible to create a true OpenCL 
image object from OpenCL buffer. The converted OpenCL 
image object is treated as a normal buffer object and 
nothing was loaded into the texture processor or L1 cache 
memory. Perhaps a new MatMul kernel should be 
developed to validate the possibility of such optimization 
technique.    

B.7.FP16 over FP32 

Kernel name WG size 

tf-kernel 3-fp32-float4 16

tf-kernel 3-fp32-float8 16

tf-kernel 3-fp32-float16 64

Table 1. The optimal work group size for MatMul kernel 3 with 
different vectorization ratio. 
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FP32 square matrix multiplication performance of kernel v3 
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Figure 17. The FP32 square matrix multiplication performance of 
OpenCL kernel version 3 with different vectorization ratio. Different 
colors show matrices of different size. Y-axis is the time needed in 
microsecond (us).  
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Figure 19. The FP32 square matrix multiplication performance of 
OpenCL kernel version 3 with different OpenCL memory object. 
Different colors show matrices of different size. Y-axis is the time 
needed in microsecond (us).  

Figure 18. The FP16 square matrix multiplication performance of 
OpenCL kernel version 3 with different vectorization ratio. Different 
colors show matrices of different size. Y-axis is the time needed in 
microsecond (us).  
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 Claimed by Qualcomm, the throughput of FP16 is 
doubled compared to FP32. Additionally, data size is half 
of FP32, which further shorten the memory transfer time. 
The purpose of this experiment is to investigate the 
possibility of training the MNIST model on mobile GPU 
with FP16 precision.  
 A new class `clQualcommFP16Engine` was created 
with the following modification. All FP32 data would be 
converted to FP16 equivalent before the matrix 
multiplication. Matrices filled with FP16 values were 
passed to the MatMul kernel arguments. The FP16 kernel 
is similar to the FP32 one with slight modification on 
memory load/store operation. To save the effort of 
conversion, a FP32 variable was used to store the results of 
FP16 multiplication. Each element in the multiplied matrix 
if of type FP32. The result is shown in Figure 18.   
 On Figure 18, there’s minor improvement in speed but 
the quality deteriorated as the number of matrices grew. 
For square matrix multiplication of size greater than 64. 
The per element accumulated error reached 0.1. Depending 
on the range of matrices data, the error fluctuated and the 
result wasn’t stable. Furthermore, FP16 MatMul 
implementation cannot be applied to an AI training task 
because multiple sequential matrix multiplication results in 
unacceptable error. Despite the fact that this is the best 
performance achieved, the training task in the following 
section will be tested with a FP32 MatMul kernel.   

B.8.Miscellaneous  
 Other optimization techniques have been implemented 
but no obvious performance improvement was observed. In 
this section, the miscellaneous optimization techniques are 
discussed including avoid the usage of `size_t` in kernel 
code, avoid integer module operation, use fast integer 
multiplication.  
 The reason why `size_t` data type should be avoided in 
an OpenCL kernel is the complexity of computing 64 bits 
integers. The `size_t` datatype will be promoted 
automatically by the compiler to 64 bits integer on 64-bit 
OS. Adreno GPU has to emulate a 64 bits integer with two 
32 bits registers. The additional resource consumption is 
unnecessary if it can be replaced with other datatype.  
 All integer variables in the MatMul kernel was defined 
with the smallest functional datatype. The resource 
allocated for a variable just meets the required range of 
operation. For instance, it’s impossible for matrices size to 
exceed 2^16=65535. Thus, all related variables were 
defined with the `cl_ushort` datatype, which to some 
extent, might reduce the computation and memory transfer 
time. Nonetheless, no obvious improvement was observed.  
 Integer module operation is expensive and another 
way to get the same result is binary AND operation. A mod 
4 operation is equivalent to a binary AND operation with 3 
(0x11). 
 Integer multiplication is expensive in Adreno GPU. If 
the expected result falls within the range of [-2^23, 2^23-1] 
(singed) or [0, 2^24-1] (unsigned), the `mul24` instruction 
is faster because fewer bits are calculated. However, the 
replacement of the `mul24` instruction gave minor 
performance improvement.  

C. Training MNIST dataset with various AI models    

 With all MatMul OpenCL kernel tested in the previous 
section, training an AI model on mobile GPU is feasible 
and the result will be discussed in this section.  

C.1.The design of pure training program  
 The purpose of this pure training program is to 
measure the time needed for training. Batches of training 
data will be loaded into Tensorflow runtime for 
computation. After the training process is done, the time 
passed will be calculated. Eventually, the testing samples 
will be loaded for 100 samples at a time. The overall 
accuracy is accumulated and averaged for the final model 
accuracy.  

C.2.The design of training logger program  
 During the development process, it’s hard to debug an 
AI training program without understanding the current 
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Figure 21. The DNN training accuracy on desktop computer. 

Figure 22. The MLP training accuracy on mobile CPU.  

Figure 20. The MLP training accuracy on desktop computer. 

Figure 23. The DNN training accuracy on mobile CPU.  



training accuracy. This program is designed to probe the 
trained model after a batch of training data is used to 
trained the model. The probed accuracy will be logged on 
mobile devices and viewed on desktop computer to inspect 
the training progress over iterations. Expectedly, this 
program is time consuming because testing a model for 
each training batch is computationally expensive. In the 
following discussion, the training progress on desktop 
computer is set as the ground truth for comparison.  

C.3.Training accuracy  
 Figure 20 and Figure 21 show the MLP and DNN 
model training progress on desktop CPU. Figure 22 (MLP) 
and Figure 23 (DNN) show the training progress on mobile 
CPU. Figure 24 (MLP) and Figure 25 (DNN) show the 
training progress on mobile GPU. From Figure 20 to 28, 
it’s obvious that the training results on mobile GPU is 
equivalent to the results obtained from desktop computer 
or mobile CPU. Which further proves that training on 
mobile GPU is successful.  

C.4.Training time  
 The pure training performance on mobile CPU is 
shown in Table 3. The pure training performance on mobile 
GPU with different MatMul kernel implementations are 
shown from Table 4 to 6. Notice that the batch size is 
different for MLP and DNN model because the Tensorflow 
optimizer cannot reach a convergent result given large 
batch size in MLP model.   
 Observed from the results, the training accuracy are 
the same for both mobile CPU and GPU. The performance 
of CPU is still way faster than mobile GPU. The 
explanation for such phenomenon will be discussed in the 
discussion section.  
 Compared the results on Table 5 and 6, The DNN 
training time decreased by 26% because of higher 
vectorization ratio. At the same time, the MLP training 
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Figure 24. The MLP training accuracy on mobile GPU.  

Figure 25. The DNN training accuracy on mobile GPU.  

Table 3. Training performance on mobile CPU

Model Name Overall 
Accuracy (%)

Training Time 
(s)

Batch Size

MLP 78.3435 5.34335 100

DNN 96.7990 216.708 1000
Table 4. Training performance on mobile GPU

Model Name Overall 
Accuracy (%)

Training Time 
(s)

Batch Size

Kernel Used `MatMul_TN_1D_Fp32_Float4` + 
`MatTrans_1D_Fp32_Float4`

MLP 79.2828 56.3333 100

DNN 96.7909 508.305 1000

Table 5. Training performance on mobile GPU

Model Name Overall 
Accuracy (%)

Training Time 
(s)

Batch Size

Kernel Used MatMul_TN_1D_Fp32_Float8` + 
`MatTrans_1D_Fp32_Float8

MLP 80.0404 56.5589 100

DNN 97.2151 527.089 1000

Table 6. Training performance on mobile GPU

Model Name Overall 
Accuracy (%)

Training Time 
(s)

Batch Size

Kernel Used MatMul_TN_1D_Fp32_Float16` + 
`MatTrans_1D_Fp32_Float16

MLP 78.8788 53.1919 100

DNN 96.6364 388.855 1000

Throughput of mobile CPU/GPU
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Figure 26. The throughput of Snapdragon 835 CPU and Adreno 
540 GPU in square matrix multiplication task. X-axis is the size 
of the matrix. Y-axis is the throughput in GFLOPS. 



time decreased by merely 6%. Figure 27. visualizes the 
results of training time on mobile GPU. 

D. GPU Computing capability:  
 This section explores the computing capability of 
mobile GPU/CPU by measuring the floating point 
operations per second in the square matrix multiplication 
benchmark.  
 From GeekBench [8], the throughput for Snapdragon 
835 CPU is roughly about 11.5 GFLOPS. Based on our 
experiments, the throughput of was calculated as follow. 
For a square matrices multiplication task, the number of 
floating point operations roughly equals to N^3. As a 
result, the computed throughput is shown on Figure 26. 
The result obtained is slightly lower than GeekBench’s 
measurement, the maximum throughput for CPU is ~7 
GFLOPS, and GPU is ~ 6 GFLOPS.   

VI.DISCUSSION OF RESULTS 
A.  Experiment — CLBlast evaluation 

 The tuned version of CLBlast OpenCL BLAS library 
is by far the fastest kernel tested on Adreno 540 GPU. In 
Figure 12. the performance of the tuned CLBlast library is 
slower than CPU if matrix size is smaller than 1024. The 
reason is as follow, profiled by the Snapdragon profiler, the 
actual computation consists of a small portion of time. A 
large portion of time (1272428 us ~= 1.2 sec ) was spent on 
the compilation of OpenCL kernel source code. Since the 
performance measurements in Figure 12. were averaged 
for 10 iterations. As a result, given the actual computation 
consists of a small portion of time (i.e. matrix size < 1024), 
the kernel compilation time boosts up the average time 
significantly.  
 The compilation of BLAS OpenCL kernel source code 
in CLBlast library could be further identified by the 
measurement of Tensorflow overhead in Figure 13. The 
excessive time is contributed by the compilation of kernel 
source code. The CLBlast library is designed in a smart 
way such that the compilation process is needed only for 
the first run. The compiled binary will be cached in the 
system and a new OpenCL program will be created from 
binary instead of from source.         

B. Experiment —- OpenCL kernel optimization  
 Among all kernels implemented in this paper, the 1D 
kernel with `transpose before multiply` method gives the 
best performance. For different ratio of vectorization, the 

float16 data type is the most efficient. In additional, 
miscellaneous optimization techniques were applied. 
Notice that not all optimization strategy was integrated 
successfully, changing from FP32 multiplication FP16 
wasn’t successful because of the deteriorated precision, 
and replacing memory object from OpenCL buffer with 
image gave worse performance. Combined, MatMul kernel 
version 3 (FP32) with vectorization ratio of 16 gives the 
best performance among all manually designed kernels 
(CLBlast excluded). The performance comparison is 
shown on Figure 28. Still, mobile GPU is slower than 
mobile CPU. However, some additional factors should be 
taken into considerations including the theoretical 
throughput of mobile CPU/GPU, and the memory transfer 
time between host and OpenCL device. 

C. Training MNIST dataset with various AI models 
 Compared with the MNIST training results on desktop 
computer, mobile CPU or GPU is capable of reaching the 
same model accuracy. The difference of growth rate 
between mobile platform and desktop platform is 
unexpected, the training accuracy increases dramatically 
on desktop computer while it grows slowly on mobile 
platform. Perhaps there’re some API level optimization for 
Tensorflow Python API that causes the difference.  

VII.LIMITATION  
 The limitations of this paper is separated into software 
part and hardware part.  
 For the software design of clMatMulEngine, an 
OpenCL context object is created for each matrix 
multiplication operation in Tensorflow runtime. Many 
OpenCL host side objects are created and released after 
computation. Such design choice isn’t efficient because a 
context object, device object, command queue object can 
be reused in the next operation. In other words, the 
OpenCL host side objects should be kept for the same 
OpenCL devices. Host-side initialization should only be 
done once for a device. During the research phase of this 
project, such limitation was identified. The  original 
initiative was to build a well-integrated OpenCL version of 
Tensorflow. The plan was cancelled because the estimated 
amount of engineering work is beyond the workload of this 
project. Such operation requires deep integration of 
OpenCL into the Tensorflow framework.   
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MNIST training time on mobile GPU 
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Figure 27. The MNIST training performance. Blue bar represents the 
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FP32 Performance comparison between CPU & MatMul kernel 
v3 with float16 vectorization
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 For the hardware limitation, the closed source 
architecture of Adreno GPU makes it challenging to verify 
the optimization strategy. For instance, the info about the 
size of the on-chip local memory, the size of L2 cache, the 
size of L1 cache aren’t revealed by Qualcomm. 
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IX.CONCLUSION  
 The advancement of computing power on mobile 
devices and the recent progress in AI push the computation 
toward the users’ end. In this report, the possibility of 
training AI models on mobile devices was explored by 
embedding OpenCL code into the Tensorflow framework. 
Also multiple benchmarks were tested on the mobile 
platform to understand the characteristics of the 
heterogeneous computing platform. The training and 
inference processes on mobile devices were accelerated by 
off-loading the intensive computation from mobile CPU to 
GPU. Also, training a MNIST dataset on mobile GPU was 
successful. Despite the matrix multiplication task was 
slower on mobile GPU. The best version of the manually 
designed OpenCL kernel outperformed the baseline 
performance by 2.16 times for square  matrix 
multiplication of size 1024. Further investigation is needed 
to unveil the underlying hardware architecture of mobile 
GPU, and explore the capability of mobile AI applications.  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