
Course Info: ELEC4848 Senior Design Project 2017-2018

Project Title: The performance optimization on TensorFlow framework on Mobile GPU

devices using OpenCL

Supervisor: Prof. C. L. Wang (clwang@cs.hku.hk)

Name: Cheng Wei (wei_cheng@hku.hk)

Date of Submission: 2018.04.09

Page ! of !1 85

mailto:clwang@cs.hku.hk
mailto:wei_cheng@hku.hk

Summary
 The advancement of mobile computing technology and the recent progress in AI have driven the
prosperity of edge computing, which means the computation used to happen in the cloud is now shifting to
edge devices. Before the blossom of smart phones, mobile devices merely served as a communication
medium; however, it’s so powerful and energy efficient now, it’s capable of operating intensive AI
computation within a reasonable power budget. Yet, not all open-source AI frameworks in the market support
AI training on mobile devices. In this report, the feasibility of training a small AI task, the MNIST
handwritten dataset, using Tensorflow framework on mobile CPU/GPU was demonstrated. To further
optimize the Tensorflow framework performance on mobile devices. Benchmark programs were executed on
mobile GPU to better understand the underlying architecture. Based on the benchmark results collected,
GPU optimization techniques were applied to conquer the system bottleneck. As a result, the matrix
multiplication task was accelerated by 2.16x times compared to the baseline performance.

Acknowledgement
 We would like to give special thanks to Prof. C.L. Wang, Department of Computer Science, the
University of Hong Kong for his guidance and help. The former intern 张启萌 who shared his work on the
Caffe library on Snapdragon 820 platform. PhD student Pengfei Xu who shared his experience on deep
learning benchmark on GPU. Final year student Ji Zhuoran who shared his experience on porting Caffe
library to mobile GPU. Student Liu Weizhi who shared his work on GPU kernel stretching and slicing on
NVIDIA GPU.
 We would like to give thanks with whole heart to anyone who contribute and share idea with us.

Page ! of !2 85

Table of content

Summary 2
Acknowledgement 2
List of Figures 5
List of Tables 5
Abbreviations 5
I. Introduction 6

A. Motivation 6
B. Background 6
C. Project goal 6
D. Report organization 6
E. Project deliverables 6
F. Project schedule 6
G. Literature review 6

II. Analysis of problem 6
A. Software — Tensorflow 6

A.1.Architecture 6
A.2.OpenCL in Tensorflow 7
A.3.Tensorflow on mobile platform 7

B. Hardware — Mobile GPU 7
C. Adreno GPU 8
D. OpenCL 8

III. Theoretical principles 9
A. SPMD programming model 9
B. Optimal memory access pattern 9

IV. Method of investigation 9
A. Benchmark — LMBench 9
B. Benchmark — MixBench 9
C. Benchmark — OpenCL memory bandwidth test 10

V. Preparation work 12
A. Tensorflow porting effort 12
B. Dataset preparation effort 13
C. Tensorflow AI model preparation effort 13
D. Tensorboard logger porting effort 13
E. Benchmark porting effort 13
F. OpenCL kernel compiler 13
G. Equipment preparation 13

VI. Design and construction of software system 14
A. Purpose 14
B. Design challenges 14
C. Architecture 14
D. Workflow 14

Page ! of !3 85

E. GPU optimization technique applied in clMatMulEngine 15
VII.Experiment results 15

A. Experiment — CLBlast evaluation 15
A.1.Untuned version 15
A.2.Tuned version 15
A.3.Tensorflow overhead 15
A.4.Problem encountered 15

B. Experiment — Tensorflow MatMul test 17
C. Experiment —- OpenCL kernel optimization 17

C.1.Base line performance 17
C.2.Local memory 19
C.3.Transpose before Multiplication 19
C.4.Vectorization 21
C.5.Workgroup size 21
C.6.Different OpenCL memory object 21
C.7.FP16 over FP32 22
C.8.Miscellaneous 22

D. Training MNIST dataset with various AI models 23
D.1.AI model structure 23
D.2.The design of pure training program 23
D.3.The design of training logger program 23
D.4.Training accuracy 26
D.5.Training time 26

E. GPU Computing capability 27
VIII.Discussion of results 27

A. Experiment — CLBlast evaluation 27
B. Experiment —- OpenCL kernel optimization 27
C. Training MNIST dataset with various AI models 28

IX.Limitation 28
X. Conclusion 28
XI.Reference 30
XII.Appendix 31

A. clMatMulEngine design source code 31
B. MNIST AI model building Python script 51
C. MNIST pure trainer program source code 58
D. MNIST training logger program source code 64
E. OpenCL compiler source code 68
F. Tensorflow MatMul test — opencl-matmul source code 76
G. OpenCL memory bandwidth test source code 80

Page ! of !4 85

List of Figures
• Figure 1. Tensorflow software architecture
• Figure 2. High-Level Adreno GPU architecture
• Figure 3. Memory random access latency for

Snapdragon 835 platform
• Figure 4. Memory random access latency for

Snapdragon 820 platform
• Figure 5. The performance of single precision

floating point operation on Adreno 540 GPU
• Figure 6. The performance of half precision

floating point operation on Adreno 540 GPU
• Figure 7. The performance of integer operation on

Adreno 540 GPU
• Figure 8. The performance of single precision

floating point operation on Adreno 530 GPU
• Figure 9. The performance of half precision

floating point operation on Adreno 530 GPU
• Figure 10. The performance of integer operation

on Adreno 530 GPU
• Figure 11. Memory transfer bandwidth for Adreno

540 GPU
• Figure 12. Memory transfer bandwidth for Adreno

530 GPU
• Figure 13. FP32 square matrix multiplication

performance between CPU Eigen library and
untuned CLBlast library

• Figure 14. FP32 square matrix multiplication
performance between CPU Eigen library and
tuned CLBlast library

• Figure 15. Measurement of Tensorflow overhead
• Figure 16. FP32 square matrix multiplication

performance between CPU Eigen library and
MatMul kernel 1

• Figure 17. FP32 square matrix multiplication
performance between kernel 1 and kernel 2

• Figure 18. FP32 square matrix multiplication
performance between kernel v2 and kernel v3

• Figure 19. FP32 square matrix multiplication
performance of kernel v3 with different
vectorization ratio

• Figure 20. FP16 square matrix multiplication
performance of kernel v3 with different
vectorization ratio

• Figure 20.5 FP32 square matrix multiplication
performance of kernel v3 with OpenCL memory
object

• Figure 21. The computational graph for MLP
model

• Figure 22. The computational graph for DNN
model

• Figure 23. The MLP training accuracy on desktop
computer

• Figure 24. The DNN training accuracy on desktop
computer

• Figure 25. The MLP training accuracy on mobile
CPU

• Figure 26. The DNN training accuracy on mobile
CPU

• Figure 27. The MLP training accuracy on mobile
GPU

• Figure 28. The DNN training accuracy on mobile
GPU

• Figure 29. Training MNIST time on mobile GPU
with different MatMul kernel

• Figure 30. Throughput of mobile CPU/GPU
vectorization

• Figure 31. The time spent on building CLBlast
OpenCL kernel.

• Figure 32. FP32 Performance comparison between
CPU & MatMul kernel v3 with float16
vectorization

List of Tables
• Table 1. MatMul operation analysis
• Table 2.The optimal work group size for MatMul

kernel v3 with different vectorization ratio.
• Table 3. Training performance on mobile CPU
• Table 4. Training performance on mobile GPU

(kernel used: `MatMul_TN_1D_Fp32_Float4` +
`MatTrans_1D_Fp32_Float4`)

• Table 5. Training performance on mobile GPU
(kernel used: `MatMul_TN_1D_Fp32_Float` +
`MatTrans_1D_Fp32_Float8`)

• Table 6. Training performance on mobile GPU
(kernel used: `MatMul_TN_1D_Fp32_Float16` +
`MatTrans_1D_Fp32_Float16`)

Abbreviations
• TF: Tensorflow
• GPU: Graphical Processing Unit
• CPU: Central Processing Unit
• GEMM: GEneral Matrix-to-matrix Multiplication
• AI: Artificial Intelligence
• MLP: Multi-Layer Perceptron
• DNN: Deep Neural Network
• MNIST: Modified National Institute of Standards

and Technology
• OpenCL: Open Computing Language
• BLAS: Basic Linear Algebra Subprogram
• FP32: Single Precision Floating Point
• FP16: Half Precision Floating Point
• TDP: Thermal Design Power
• SPMD: Single Program Multiple Data
• SoC: System On Chip
• PIE: Position Independent Execution

Page ! of !5 85

I. INTRODUCTION
 The introduction section covers the project
motivation, project background, project goal, report
organization, project deliverables, project schedule,
and literature review.

A. Motivation
 As researchers push the boundary of AI
(Artificial Intelligence) and the blossom of mobile
devices, it’s foreseeable that the usage of AI might
soon swing toward the users’ end for better user
experience. For instance, Apple’s faceID technology
stores biological data locally on the devices and
performs computationally intensive AI training task
locally to adapt to users’ facial changes. If a piece of
facial biological data is captured on your iPhone and
sent back to Apple server for AI analysis, phone
users might be concerned about the privacy or
security issue. If an AI model is trained locally on
users’ devices, privacy will no longer be a concern.
Therefore, in this report, the possibility of training
and inference Tensorflow AI models on mobile
devices with the help of mobile GPU (Graphical
Processing Unit) will be explored.

B. Background
 Tensorflow is popular among both industry and
researchers because of its generic data flow
programming model which makes it extensible to
handle a wide range of neural network architecture.
Among all other open-source machine learning
frameworks, Tensorflow is chosen because of its
popularity among the developer community.
 Conventionally, an AI model training process is
more computationally intensive than the inference
process. To accelerate both operations, it’s desirable
to leverage the power of GPU by replacing the
existing code with parallel computing language,
OpenCL (Open Computing Language), which is an
industry-backed, open-source framework for parallel
computing across heterogeneous platforms such as
CPU (Central Processing Unit), GPU, DSP etc. By
training and analyzing a relatively simple but
meaningful machine learning model on an Android
device using mobile GPU, the possibility of edge
computing in AI applications is demonstrated.

C. Project goal
 The goal of this project is to train the MNIST
(Modified National Institute of Standards and
Technology) dataset with Tensorflow framework on
mobile GPU using OpenCL.

D. Report organization
 The report is organized in the following manner.
The introduction section gives a brief overview of
the overall structure. The second section, analyze of
problem, identifies possible issues from both
software and hardware perspectives. Next, the
theoretical principles section introduces the GPU
architecture and some commonly used optimization
techniques used in GPU programming. After that,
method of investigation section is added to elaborate
how the problem will be analyzed by running

various of benchmark tests. Then, the design and
construction of software system gives details about
the design of the abstract `clMatMulEngine` class
and the optimization techniques applied to it. Results
of existing or manually-designed testing programs
are shown in the experiment results section.
Followed by discussion section where results
obtained are compared with the theoretical
principles. Last but not least, the conclusion for this
report will be listed.

E. Project deliverables
 The deliverable of this project will a codebase
capable of training AI models on mobile GPU. The
training and inference processes should be
accelerated by the mobile GPU using OpenCL.

F. Project schedule
 In the first semester, a considerable amount of
time has been spent on understanding the software
architecture of Tensorflow, choosing suitable
hardware platforms for experiments, and collecting
information. In the second semester, intensive
coding and implementation effort have been made to
collect experimental data.

G. Literature review
 Accelerating AI framework on mobile devices
has been a popular research topic. In this section,
related acceleration frameworks will be listed.
 RSTensorflow [1] leveraged the RenderScript
framework to accelerate the matrix multiplication
and convolution operations on Android devices and
achieved 3 times speedup in Google Inception_v3
model inference task. RenderScript is a
programming framework designed by Google to
support parallel computation on Android devices. In
order to support a wide range of Android devices,
the underlying hardware architecture is hidden from
the programmers. On the other hand, OpenCL only
supports Android devices with OpenCL driver;
however, it has more control over the underlying
hardware, which means better performance can be
expected. Instead of RenderScript, OpenCL is
chosen in this project because of its efficiency.
 Qualcomm Snapdragon Neural Processing
Engine (SNPE) is the official framework from
Qualcomm supporting fast AI model inference on
mobile devices using mobile GPU; however, the
implementation isn’t open source and the training
feature isn’t supported.
 Tensorflow Lite [2] was released by Google in
Nov 2017. It accelerates Tensorflow model inference
process on mobile CPU. In detail, pre-fused
activation, and quantized data were added to allow
faster machine learning inference. Plus the AI model
file is smaller by introducing a new format called
“Flat Buffer”, which is a new serialization library
similar to the original one but without the need of
parsing/unpacking the text-based representation.

II. ANALYSIS OF PROBLEM
A. Software — Tensorflow

A.1.Architecture

Page ! of !6 85

 The Tensorflow software architecture is best
illustrated in Figure 1 [3]. The top layer libraries
such as training libraries, inference libraries, Python
clients library, and C++ clients library all depend on
Tensorflow C API. Behind it, the distributed master
is designed to distribute the load across multiple
workers, and the data flow executor is designed for
the execution of computational graph. The kernel
implementation libraries define all necessary
mathematical operations needed in the Tensorflow
library. In this project, the matrix multiplication
operation is chosen as the optimization target
because of its common usage in AI applications [4].

 The core computation happens in the kernel
implementations part, and most them depend on
Eigen library, which is a C++ template library
generating efficient code for GPU/CPU.

A.2.OpenCL in Tensorflow
 Tensorflow doesn’t support OpenCL directly,
instead, it depends on the SYCL library, which is a
C++ abstraction layer of OpenCL. Until the time of
writing, there’re three SYCL implementations
available on the market. Namely, Computecpp [5] by
Codeplay, triSYCL [6] leaded by Xilinx, and sycl-
gtx by [7] [8]. Among all these implementations,
only the sycl-gtx library is open-source and
functional. In the first semester of 2017-2018, I
found it nearly impossible to come up with a fully
operational OpenCL implementation of SYCL.
Therefore, instead of porting the backend of
Tensorflow library, which is the Eigen library, to
mobile GPU, OpenCL code was injected directly
into the Tensorflow codebase.

A.3.Tensorflow on mobile platform
 Google has been focusing on mobile AI
application and aggressively incorporating the
Tensorflow framework into their Android system.
Until the time of writing, TensorflowLite [2] is the
official support for AI inference task on mobile
CPU, and Qualcomm supported Tensorflow AI
model inference on its DSP and GPU [9, 10].

 To achieve the project goal, which is training
Tensorflow AI model on mobile GPU, several
technical difficulties were identified. First, the code
for AI training and inference is separated in the
framework, deep understanding of the overall
framework structure is necessary before making any
contribution to it. Not to mention the time spent on
digesting the industry-level codebase contributed by
experienced developers around the world. Secondly,
cross compilation is needed for any application
running on mobile devices; however, the training
code in the framework isn’t designed for such
purpose. The training code should be modified to
run on mobile devices. Thirdly, the framework only
supports desktop Nvidia GPU via cuDNN library
and AMD GPU via SYCL library. Two main stream
mobile GPUs on the market, ARM Mali GPU and
Qualcomm Adreno GPU, don’t support any of those,
which means porting the codebase directly is
impossible.

B. Hardware — Mobile GPU
 The rise of GPU in AI application was driven by
the trend of deep learning. GPU was originally
developed for better graphic display on desktop
computers. Unlike CPU, GPU has more cores while
each of them is less powerful and operates at lower
speed. Nonetheless, packing massive amount of
GPU cores on a chip gives great performance for
graphics because it needs simple computation for
each pixel and numerous pixels shall be processed
for each frame, and several frames per second. The
characteristics of GPU makes it naturally suitable
for neural network AI task because of its highly
parallelizable nature.
 Similar to the trend in desktop GPU market,
performance of mobile GPU dramatically increases
as mobile gaming gains momentum. Yet, there’re
still differences between the two. The computational
power of mobile GPUs and desktop GPUs are at
different level. Mobile GPUs are restricted by TDP
(Thermal Design Power) since most mobile GPUs
are packed with CPU into a SoC (System On Chip),
and they have to share the TDP quota. Moreover,
mobile GPUs have to share the last level memory
with CPU [11] while desktop GPUs come with a
piece of dedicated memory on chip separated from
CPU.
 There are two mainstream mobile GPUs in the
market that support OpenCL: ARM Mali and
Qualcomm Adreno. Until the date of writing, the
latest ARM Mali GPU supports supports OpenCL
1.2 with full profile functionality [12], and the latest
Qualcomm Adreno GPU supports OpenCL 2.0 with
full profile functionality [11]. In this project,
Qualcomm Adreno 540/530 GPUs were used
because the company has better vendor support and
better GPU profiling tools.
 In general, in order to run a simple OpenCL
program on mobile GPU, we need the following
items. A cross compilation toolchain (in our case the
Android NDK toolchain) to cross compile the binary
code for Android device, and a list of OpenCL

Page ! of !7 85

Figure 1. Tensorflow software architecture.

headers (available on Khronos website), and a
vendor specific OpenCL driver shipped with the
phone [11].
 Qualcomm Snapdragon profiler [13] is the
official desktop profiling tool for CPU/GPU/DSP on
Qualcomm chips. I can analyze the overall system
level performance by observing the GPU load, GPU
L1 cache miss rate, GPU L2 cache miss rate,
OpenCL kernel enqueue time, kernel execution time,
memory copy time, kernel instructions, distribution
of kernel assembly code (e.g. percentage of NOP
instruction in the OpenCL kernel code) etc.

C. Adreno GPU
 Adreno GPU is chosen in this project, thus,
more specific details will be covered in this section.
Due to the fact that the technical implementation is
proprietary, the architecture detail included in this
section is merely a concise version of the content in
the programming guide [11].
 The illustrative architecture is shown on Figure
2. There’re a shade processor (SP) and a texture
processor (TP) in the system. Memory traffic
generated by either processor has to go through L2
cache to the system memory. However, an OpenCL
image object and a buffer object are treated
differently in such design. Additional L1 cache is
located in the texture processor and it’s only
accessible by an OpenCL image read operation.

D. OpenCL
 OpenCL is the industry driven SPMD (Single
Program Multiple Data) programming model for
GPU [14]. Unlike other mobile GPU programming
framework such as RenderScript used in
RSTensorflow [1], OpenCL exposed the underlying
hardware to the developers which is more flexible
and extensible.
 The OpenCL framework is separated into
following parts: platform model, execution model,
memory model, and programming model. The
platform model defines the high-level heterogeneous
system. The execution model abstracts how SPMD
commands are executed on the platform. The
memory model defines different levels of memory in

the heterogeneous system. The programming model
defines a high level idea when designing an
algorithm.
 For the platform model, a host device is
connected to one or more OpenCL devices. For
instance, on mobile platform, the host is the CPU,
the OpenCL device is the mobile GPU. An OpenCL
device is divided into smaller parts called compute
units (CUs), which are further divided into
processing elements (PEs). The reason of defining
such concept is for the easiness of explanation in the
OpenCL execution model.
 In the execution model, an OpenCL application
can be separated into two parts, namely host-side
code and kernel code. The host-side code is run on
host device and the kernel code is executed on
OpenCL devices. A host can submit a kernel for
execution on OpenCL devices. At the same time an
integer index space is created for kernel execution.
An instance of kernel is defined as a work-item and
identified by its global id. Furthermore, work-items
are grouped into a work-group which is an abstract
concept of bundled execution.
 In the memory model, OpenCL defines two
types of data storage: buffer objects and image
objects. Buffer object is a block of adjacent memory
just like an array. Image object is more complicated
because of various image formats supported, and the

implementation is vendor specific. Normally, a
buffer object is easier to use but the kernel developer
has to be very careful with the boundary cases. As
for image object, it’s easier to conceptualize when
dealing with image processing kernel because it’s
2D naturally. For the memory region, OpenCL
defines five different memory regions, namely
global memory, constant memory, local memory,
private memory. In detail, global memory is
accessible for all work-items in a work-group.
Constant memory is a piece of memory defined as
constant in global memory. Local memory is
accessible for all work-items in a workgroup. Notice
that the implementation of local memory is vendor
specific, a local memory can be added next to an

Page ! of !8 85

Figure 2. High-Level Adreno GPU architecture.

OpenCL device or mapped to a section of global
memory. Private memory is private to each work-
item and invisible to others.
 The programming model abstracts the high level
algorithmic design concept. For instance, a
developer can come up with a data-parallel
algorithm given the problem itself is parallizable. On
the other hand, a task-parallel programming model is
achieved when kernels are submitted for an out-of-
order queue for execution. The dependencies
between the kernels are resolved by the runtime
scheduling. The limitation of such programming
model is the nature of the problem. For instance,
given a naturally sequential problem, it’s impossible
to make it task-parallel.

III. THEORETICAL PRINCIPLES
A. SPMD programming model

 GPU is faster in some applications because of
the parallel programming model. In OpenCL it’s
called SPMD, which means a group of work-items
are executing the same instruction in a lock step with
each other. Therefore, despite the fact that OpenCL
compute units are slower than normal CPU cores,
the concept of latency hiding enables GPU to
achieve high throughput. By the time a GPU core is
waiting for a memory access to the memory system,
it’s able to switch to another thread and executes a
few more ALU instructions there until it encounters
another memory instruction. As the memory system
returns the requested data to the GPU core, it
quickly switches back to the first thread and moves
on to the next instruction. In that case, a GPU be
kept busy all the time and the latency can be hidden.
Nonetheless, it’s possible for a GPU core to suffer
from low throughput because the kernel itself is
memory bounded or the memory access pattern isn’t
well supported by the underlying memory system.

B. Optimal memory access pattern
 There’re some optimal memory access patterns
in GPU programming which best fit the underlying
memory system. First, coalesced memory access
refer to the capability of combining load/store
request from neighboring work-items. The Adreno
5xx series GPU supports coalesced load/store to
local memory and coalesced load to global memory
[1]. Secondly, vectorization refers to accessing
memory in a vectorized way for a single work-item
to better utilize the memory bandwidth. The best
vectorization parameter is device dependent.
Experiments profiling the best vectorization ratio on
Adreno 540 GPU will be shown in the later part of
this report. Thirdly, it’s a good practice to load or
store a chunk of bytes from the memory, and load/
store memory address should be 32 bites aligned [1].
Fourthly, local memory is shared with all work items
within the same work-group. A kernel is faster with
local memory because the access time is lower than
global memory.

IV. METHOD OF INVESTIGATION

 In order to apply the optimization technique to
the system. Deep understand of the underly
hardware is needed despite the fact that most mobile
GPU architectures are proprietary and close source.
By executing existing or self-designed benchmark
programs on the mobile platform, information
crucial for optimization can be revealed.

A. Benchmark — LMBench
 LMBench [4] is a popular memory benchmark
program testing the memory access latency of CPU.
This benchmark is necessary because of the
hardware architecture of mobile GPU. Unlike
traditional desktop GPU with on-chip memory
separated from the system RAM, mobile GPU has to
share the last level memory with CPU. Therefore, by
understanding the memory access latency of the
system RAM, one could have a rough picture of
memory latency in GPU. Which is a critical
parameter when it comes to the optimization of GPU
kernels.
 The original software was written for UNIX
system. It’s cross-compiled to Android platform with
Android NDK version 16 toolchain. The experiment
was conducted on both Snapdragon 835 and
Snapdragon 820 SoC, results are shown on Figure 3
and Figure 4 respectively.
 From Figure 3 and Figure 4, the CPU L1 cache
access time for S835 is ~1.2 ns, and S820 is ~1.4 ns.
L2 cache access time for S835 is ~11 ns, and S820 is
~10 ns. The system RAM access time for S835 is
~145 ns, and S820 is ~170 ns. Due to the fact that
the OpenCL global memory on mobile GPU is the
system RAM. Conclusion can be made that the
global memory in OpenCL memory model on
mobile GPU has access time equals to ~170 ns and
~145 ns for S820 and S835 respectively.

B. Benchmark — MixBench
 MixBench [16] is an OpenCL benchmark testing
the relationship between three factors (throughput,
memory bandwidth, operation intensity) on a GPU.
As the operation intensity grows, the kernel moves
from a memory bound kernel to a compute bound
kernel. By profiling these factors, one can use these
parameters to design a more efficient GPU kernel.
 This experiment was conducted on both
Snapdragon 835 SoC with Adreno 540 GPU and
Snapdragon 820 SoC with Adreno 530 GPU. Integer
operation, single precision floating point operation
(FP32), and half precision floating point operation
(FP16) were tested on both platforms.
 The Adreno 540 performance of FP32 is shown
in Figure 5, FP16 performance on Figure 6, Integer
operation performance on Figure 7. The Adreno 530
performance of FP32 is shown in Figure 8, FP16
performance on Figure 9, Integer operation
performance on Figure 10. As the operation intensity
increases, the kernel is switching from a memory
bound kernel to a compute bound kernel. From
Figure 5 to 10, there’s a discontinuous point (marked
by red arrow) in each Figure, which represents a
burst in both computation and memory throughput.

Page ! of !9 85

This is the sweet region for a GPU kernel to yield
maximum hardware utilization by latency hiding.

C. Benchmark — OpenCL memory bandwidth
test

 Inspired by the bandwidth tests in Qualcomm
Adreno SDK, this benchmark was built from scratch
to measure the memory transfer bandwidth between
the host device and OpenCL devices. Data
consumed by an OpenCL kernel should be first

Page ! of !10 85

Figure 4. is the memory random access latency for Snapdragon 820 platform. X-axis is the memory
load size in byte. Y-axis is the memory random access time in microsecond (us). Multiple data points
on the right show the stride size for random memory access. Stride sizes from 16 bytes to 1024 bytes
were performed in this experiment.

1

10

100

1000

0.5 2 8 32 128 512 2048 8192

Ti
m
e	
(n
s)

Memory	 load	size	(byte)

Memory	Randrom	Access	Latency	(Snapdragon	820)

stride16

stride32

stride64

stride128

stride256

stride512

stride1024

Figure 3. is the memory random access latency for Snapdragon 835 platform. X-axis is the memory
load size in byte. Y-axis is the memory random access time in microsecond (us). Multiple data points
on the right show the stride size for random memory access. Stride sizes from 16 bytes to 1024 bytes
were performed in this experiment.

1

10

100

1000

0.5 2 8 32 128 512 2048 8192

Ti
m
e	
(n
s)

Memory	 load	size	(byte)

Memory	Randrom	Access	Latency	(Snapdragon	835)

stride16

stride32

stride64

stride128

stride256

stride512

stride1024

loaded into the GPU memory by the
`clEnqueueWriteBuffer` function in the OpenCL
programming model. Similarly, results computed by
a kernel should be read back to host using the
`clEnqueueReadBuffer` function. The data transfer
time between GPU and CPU consists of a large
portion of computational time. Thus, understanding
such performance is important for optimization.
Memory bandwidth was measured in the following

Page ! of !11 85

Adreno 530 (Single Precision)

G
FL

O
PS

0.1

1

10

100

1000

GB/s
0.1 1 10 100

0.30.40.60.70.91.11.31.61.82.1

2.42.73.13.54.04.55.15.86.77.68.810.212.014.317.321.628.038.760.0
124.0

Figure 8. The performance of single precision
floating point operation on Adreno 530 GPU.

Figure 9. The performance of half precision floating
point operation on Adreno 530 GPU.

Adreno 530 (Half Precision)

G
FL

O
PS

0.1

1

10

100

1000

GB/s
0.1 1 10 100

0.3
0.50.81.11.51.82.22.73.13.64.2

4.85.56.27.18.09.110.311.713.315.317.620.424.028.634.743.256.077.3120.0
248.0

Adreno 530 (Integer Operation)

G
IO

PS

0.1

1

10

100

1000

GB/s

0.1 1 10 100

0.30.40.60.70.91.11.31.61.82.1

2.42.73.13.54.04.55.15.86.77.68.810.212.014.317.321.628.038.760.0124.0

Figure 10. The performance of integer point
operation on Adreno 530 GPU.

Adreno 540 (Single Precision)
G

FL
O

PS

0.1

1

10

100

1000

GB/s
0.1 1 10 100

0.30.40.60.70.91.11.31.61.82.1

2.42.73.13.54.04.55.15.86.77.68.810.212.014.317.321.628.038.760.0
124.0

Figure 5. The performance of single precision floating
point operation on Adreno 540 GPU. X-axis is the
memory bandwidth in GB/s. The Y-axis is the throughput
(GFLOPS). The diameter of the data point is the kernel
operation intensity in FLOP/Byte. The number right next
to the data point is the operation intensity.

Figure 6. The performance of half precision floating
point operation on Adreno 540 GPU. X-axis is the
memory bandwidth in GB/s. The Y-axis is the throughput
(GFLOPS). The diameter of the data point is the kernel
operation intensity in FLOP/Byte. The number right next
to the data point is the operation intensity.

Adreno 540 (Half Precision)

G
FL

O
PS

0.1

1

10

100

1000

GB/s

0.1 1 10 100

0.3
0.50.81.11.51.82.22.73.13.64.2

4.85.56.27.18.09.110.311.713.315.317.620.424.028.634.743.256.077.3120.0
248.0

Adreno 540 (Integer Operation)

G
IO

PS

0.1

1

10

100

1000

GB/s

0.1 1 10 100

0.1
0.30.40.60.70.91.11.31.61.82.1

2.42.73.13.54.04.55.15.86.77.68.810.212.014.317.321.628.038.760.0
124.0

Figure 7. The performance of integer operation on
Adreno 540 GPU. X-axis is the memory bandwidth in
GB/s. The Y-axis is the throughput (GIOPS). The
diameter of the data point is the kernel operation
intensity in IOP/Byte. The number right next to the data
point is the operation intensity.

scenarios. Data transfer from host to OpenCL
devices, from OpenCL devices to host, and from an
OpenCL device to another OpenCL device.
 Unlike the traditional desktop GPUs, the global
memory on mobile GPU is shared with system
RAM. As a result, the obtained results should be the
transfer bandwidth within the system RAM.
Moreover, the OpenCL buffer memory and image
memory are handled differently on Adreno GPU [1].
In this experiment, only OpenCL buffer memory
object was tested. Results of Adreno 540 GPU are
shown in Figure 11, and results of Adreno 530 GPU
are shown in Figure 12. Notice the difference
between Figure 11 and Figure 12, both Adreno 540
and Adreno 530 devices have similar host-to-device
and device-to-host memory transfer bandwidth.
Expectedly, the device-to-device bandwidth on
Adreno 540 GPU is half of those between host and
device because the data should be read and sent back
to OpenCL devices, the channel is shared so half of
the bandwidth is reasonable. Unexpectedly, the
device-to-device memory transfer bandwidth on
Adreno 530 GPU is 2 to 3 times faster than host-to-
device bandwidth. The source code can be found in
Appendix G: OpenCL memory bandwidth test source
code.

V. PREPARATION WORK

 Mentioned in the analyze of problem section,
many technical barriers need to be overcome before
any optimization techniques are applied. In this
section, all preparation work will be covered.

A. Tensorflow porting effort
 The most challenging part of porting Tensorflow
training functionality to Android phone is to identify
the problematic segments and modify the codebase
with minimum code injection. Unlike conventional
machine learning framework (i.e. Caffe) that
depends on traditional GNU Make system, the
Tensorflow framework relies on the Bazel software
building tool developed by Google. In such system,
a library or a binary are regulated by a BUILD file
which is similar to the Makefile in GNU Make.
 One of the several technical difficulties
encountered during the development is the
compilation of `//tensorflow/
core:android_tensorflow_lib` target in the
framework. The target itself contains most of the
libraries needed for training an AI model. Several
C++ versions have been tested to cross compile the
existing codebase. Limited C++ support from
Android NDK toolchain adds complexity to the
development. For instance, the `std::to_string()`
function hasn’t been added to the NDK toolchain
revision 15c, a temporary C++ template patch was

Page ! of !12 85

Figure 11. This chart shows the memory transfer bandwidth between host device and OpenCL device on
Adreno 540 GPU. X-axis is the memory size being transferred in Mbyte. Y-axis is the measured bandwidth
in GB/s.

Adreno 540 Memory Bandwidth Test

Ba
nd

w
id

th
 (G

B/
s)

0

1

2

3

4

Transferred Memory Size (MByte)

0 175 350 525 700

device-to-device device-to-host host-to-device

Figure 12. This chart shows the memory transfer bandwidth between host device and OpenCL device on
Adreno 530 GPU. X-axis is the memory size being transferred in Mbyte. Y-axis is the measured bandwidth
in GB/s.

Adreno 530 Memory Bandwidth Test

Ba
nd

w
id

th
 (G

B/
s)

0.00

1.75

3.50

5.25

7.00

Transferred Memory Size (MByte)

0 100 200 300 400

device-to-device device-to-host host-to-device

created for this specific function to pass the
compiling process.
 Another technical difficulty encountered is the
denial of execution on Android phone. For Android
version greater than 5.0, PIE (Position Independent
Execution) is enforced to ensure the security.
Program compiled without `-fPIE -pie` linker flags
won’t be allowed to executed on Android version
newer than 5.0.
 `-lpthread` is commonly used compiler flag for
UNIX-like platform if the code shall be linked with
the pthread library. Out of expectation, it is included
in the Android NDK toolchain automatically and
adding such flag will cause a linking error. Manual
removal was carefully performed to ensure the
configuration is correct for both the cross-compiled
Android platform and the original desktop platform.
 LMDB (Lightning Memory-Mapped Database)
is a library that Tensorflow training codebase
depends on. The cross compilation of such library
requires an additional compiler flag `-DANDROID`
and the removal of `-lpthread` linker flag.

B. Dataset preparation effort
 MNIST handwritten digits dataset consists of
60000 training samples and 10000 testing samples.
Each sample is a grey scale image of size 28*28.
With wichtounet’s [17] kind contribution to the
open-source community, the work of parsing
MNIST dataset and incorporating it into the mobile
GPU training program is reduced dramatically.

C. Tensorflow AI model preparation effort
 Tensorflow AI model is built by its Python API
to reduce the programming complexity. A
Tensorflow model file is a machine-readable
protocol buffer file (.pb) which defines the
computational graph of certain AI algorithm. The
file was sent to Android devices and read by
Tensorflow runtime to rebuild the computational
graph structure on mobile devices.
 In this project, two AI models will be presented,
MLP (Multi-Layer Perceptron) and DNN (Deep
Neural Network) respectively. The architectural
design and hyper-parameters of such AI model is out
of scope of this project, only the content will be
covered. The first model, MLP (), consists of 1 input
layer of size [batch_size, 784], 1 output layer of size
[batch size, 10], 2 hidden layers, each with 50
neurons. The second model, DNN, consists of 2
convolutional layers (32 5x5 filers for the first and
64 5x5 filters for the second), 2 pooling layers (2x2
filter with stride 2 for both), 2 fully connected
layers, 1 drop-out layer.
 Since the system bottleneck and optimization
target of this project are matrix multiplication, only
the number of such operation is analyzed. For both
DNN and MLP, the number of matrix multiplication
operation is shown in Table 1. The Python script
used to generate the models can be found in
Appendix B: MNIST AI model building Python
script.

D. Tensorboard logger porting effort
 Tensorboard is a Tensorflow application
debugging tool developed by Google. It’s only
available on desktop platform using Tensorflow
Python API. The debugging tool is essential for AI
training processes and worth porting to Android
platform. Inspired by tensorboard_logger project on
GitHub [18], the MINST training program is capable
of generating Tensorboard compatible log files with
slight modification. Consequently, the training
accuracy of an AI model on mobile devices was
visualized using the powerful Tensorboard
debugging tool.

E. Benchmark porting effort
 For the thorough understand of the SoC
performance, benchmark programs for both memory
system and GPU were executed. For memory system
benchmark, as suggested by my supervisor, the
classical LMBench [15] was ported to Android
platform. For GPU benchmark, the MixBench [16]
was ported to mobile GPU.
 The LMBench was originally designed for a
UNIX-like system, and luckily, most of the tests
could be ported to Android platform except some
network related benchmarks. MixBench is a GPU
benchmark tool testing mixed operational intensity
kernels. Porting it was less troublesome because of
well-supported cross compilation setup.

F. OpenCL kernel compiler
 Offline kernel compilation is one of the OpenCL
optimization technique applied in the later section.
There’re two ways to create an OpenCL program
object: online compilation and offline compilation.
Online compilation creates an OpenCL program
object by calling `clCreateProgramWithSource`, and
the offline compilation creates an object by calling
`clCreateProgramWithBinary`. To support offline
compilation, this OpenCL kernel compiler is
designed from scratch. First, the compiler creates an
object by reading the OpenCL kernel source code in
bytes. The created OpenCL program object is then
queried by the `clGetProgramInfo` function with
`CL_PROGRAM_BINARY_SIZES` flag. The right
amount of memory will be allocated based on the
value returned. Next, read the program binary size
using the `CL_PROGRAM_BINARIES` flag, and
eventually, write it to a file in binary format. The
source code can be found in Appendix E: OpenCL
compiler source code.

G. Equipment preparation

Table 1: MatMul operation analysis

Model
Name MatMul Operation

MLP [batchSize, 784] * [784, 50] * [50, 50] *
[50, 10]

DNN [batchSize, 3136] * [3136, 1024] * [1024,
10]

Page ! of !13 85

 In this project, the benchmark tests were
conducted on multiple devices including Xiaomi 6
Android phone, Open-Q Snapdragon 820
development kit. Some trivial equipment preparation
work is needed, including flashing the Android
ROM, getting root access on Android platform etc.
 Also, suggested by the Qualcomm programming
guide [11], the power limitation on both mobile
GPU and CPU can be lifted once entered the
performance mode. To achieve the maximum
performance, all experiments conducted on mobile
platform are performed under such setup.

VI. DESIGN AND CONSTRUCTION OF
SOFTWARE SYSTEM
A. Purpose

 Due to the reason mentioned in the introduction
section, only Nvidia and AMD GPU are supported in
the Tensorflow framework. For the purpose of
accelerating it on mobile GPU, OpenCL code was
embedded into the Tensorflow MatMul kernel to by-
pass the original program execution routine and
routed it to the OpenCL-accelerated version.
Originally, the computation workload was handled
by Eigen library, which is a cutting-edge C++ linear
algebra library.
 The matrix multiplication operation was
identified as system bottleneck in most AI training
or inference tasks [4]. Thus, a dedicated class called
` clMatMulEngine` was designed to handled the
floating point (FP32) matrix multiplication and off-
load the computation from mobile CPU to mobile
GPU via OpenCL code.

B. Design challenges
 Perhaps the most demanding part of the code
injection challenge is understanding the Tensorflow
core codebase due to the lack of internal
documentation revealed by Google and all the high-
level C++ template representation. Converting
matrices data from the `Eigen::Tensor` to OpenCL
style `cl_mem` object required some understandings
of both framework.
 Moreover, the matrix multiplications is
originally handled by a single line of code
`out.device(d) = in0.contract(in1, dim_pair);`,
which hides lots of implementation details. For
instance, the object called `dim_pair` contains the
info for whether two matrices should be transposed
before the actual multiplication. Shortage of such
implementation details left the development process
struggling. In normal computation, matrices won’t
be transposed and the bug is invisible. During the AI
model training process, matrices will be transposed
if multiple multiplication operations are performed
sequentially. As a result, two weeks were spent on
the identification of this problem because the un-
transposed computed results lead to problematic
gradient calculation and a silent failure on training
task.

C. Architecture

 As the complexity of this project grows,
experiments with higher code complexity have to be
supported by the original design of
`clMatMulEngine`. Experimenting with new
OpenCL optimization technique sometimes requires
modification in host-side code. For instance,
applying new OpenCL memory optimization
techniques often introduces additional OpenCL
event objects to handle the program synchronization
or a new memory flag for OpenCL memory object.
With object oriented programming (OOP) in mind,
the software architecture is defined as follow.
 The original `clMatMulEngine` C++ class
became the parent class of all child subclasses. It
handles all common OpenCL operations such as
host-side OpenCL initialization, common debugging
functions etc. Common member variables in were
included such as the size of matrices, OpenCL
context object, OpenCL device object, OpenCL
command queue object. Moreover, Virtual C++
functions were added to define the behavior of
inherited classes. For instance, a subclass inherited
from `clMatMulEngine` should implement a
`clEnd()` function which releases all OpenCL related
objects used in the operation and returns
`CL_SUCCESS` if all functions completed as
expected. A `memLoad()` function which copies the
computed results from an OpenCL memory object to
a Tensorflow defined `Eigen::TensorMap`. A
`memInit()` method that reads in two
`Eigen::TensorMap` objects (two matrices) and
replicates the results to OpenCL memory objects.
 `binaryLoaderInterface` was created for loading
compiled OpenCL kernel dynamically, which
increased the performance because the compilation
process is time-consuming. This interface defined a
virtual method `loadFromBinaryCompute()` which
loads the compiled OpenCL kernel binary into an
OpenCL program object and perform the
computation. The implementation detail of a virtual
function is defined in the inherited classes.
 Three child classes of `clMatMulEngine` are as
follow. A `clQualcommFP32Engine` class inherits
from `clMatMulEngine` class and
`binaryLoaderInterface` class, it’s designed to
handle floating point 32 bits matrix multiplication on
Qualcomm Adreno GPU and loads the compiled
OpenCL kernel binary at runtime.
`clQualcommFP16Engine` was created with similar
functionality compared to
`clQualcommFP32Engine`. The difference lies in
the memory copying operation because the floating
point of 16 bits is half of the size of 32 bits. Also,
different kernel functions are called.
`clBLASTEngine` is a child class of
`clMatMulEngine`. The reason for creating such
class is to investigate the performance of the
CLBlast open source OpenCL BLAS (Basic Linear
Algebra Subprogram) library. The source code for
`clMatMulEngine` can be found in Appendix A:
clMatMulEngine design source code.

D. Workflow

Page ! of !14 85

 The workflow of `clMatMulEngine` is no
different from other OpenCL applications. It
involves the following operations, host-side code
initialization, memory copy to OpenCL devices,
submit OpenCL kernel, memory copy from OpenCL
devices back to host, release OpenCL objects. In the
scope of the `clMatMulEngine` design, `hostInit()`
function does the host-side initialization, `memInit()`
handles memory copy to OpenCL devices,
`loadFromBinaryCompute()` submits OpenCL
kernels, `memLoad()` copies results back to the host,
`clEnd()` releases OpenCL objects. The
implementation details are included in the appendix.

E. GPU optimization technique applied in
clMatMulEngine

 OpenCL adheres to a relaxed memory model,
some parts of the memory consistency issues are
implementation specific and the details are left to
device vendor. For Adreno mobile GPU, some
optimization techniques are discussed in the official
Qualcomm OpenCL programming guide [11] that
are specific to Adreno GPU. Adequate techniques
are applied in the design of `clMatMulEngine` and
will be discussed in this section. The discussion will
be separated into two parts, memory optimization
and binary kernel optimization respectively.
 Memory optimization technique is important on
mobile devices because of several limitations on
mobile platforms. There’re limited system RAM on
mobile devices and training AI applications is ofter
memory consuming because it usually happens in
batch. Loading a batch of data into the training
program is more efficient and is a widely applied
method. In this project, out of memory situation was
observed when dealing with large batch size.
Discovered from the resource monitor, the training
application filled up the memory and resulted in a
system freeze. In details, memory copy is required in
an OpenCL application to copy the existing data
from host to an OpenCL device; however, the
mobile GPU shares the last level memory with CPU,
which makes the operation unnecessary because the
original and the copied memory all sit in the system
RAM. During the training process, an OpenCL
accelerated Tensroflow MatMul functor will make a
copy of the existing Tensorflow allocated data and
consumed twice the size of a normal batch.
 The solution to the problem mentioned above is
the zero copy method mentioned in the
programming guide [11]. An OpenCL memory
object can be created without introducing
unnecessary copy if the flag
`CL_MEM_ALLOC_HOST_PTR` is used plus the
usage of OpenCL memory map function instead of
memory copy one. The `clMatMulEngine` is free
from out of memory problem with this memory
optimization technique applied.
 The binary kernel optimization technique is
important because an OpenCL object is created in
the Tensorflow framework for each MatMul
operation. (It’s not the best practice of doing so and
will be discussed in the limitation section.) For each

MatMul operation, the kernel code should be
compiled in order to create an OpenCL kernel
object. Discovered from the Snapdragon profiler, the
compilation time for OpenCL kernel is time
consuming and slow down the performance
dramatically because there’re plenty of MatMul
operations in an AI application. With this
observation in mind, a simple OpenCL device
compiler was created to support offline compilation,
which pre-compiles the kernel and load the compiled
binary at runtime. The
`clCreateProgramWithSource` function was replaced
with `clCreateProgramWithBinary` to create an
OpenCL program object in the `clMatMulEngine`.

VII.EXPERIMENT RESULTS
A. Experiment — CLBlast evaluation

 The CLBlast library is an open source OpenCL
BLAS library [19]. It’s designed to leverage the
performance of various kinds of OpenCL devices
ranging from desktop GPUs to mobile GPUs. The
library consists of two parts, the BLAS library which
provides basic library algebra operations, and a tuner
that runs automated tests on an OpenCL devices and
generates the a combination of parameters that gives
the best performance. In
this experiment, only the GEMM (GEneral Matrix-
to-matrix Multiplication) functionality of the BLAS
library was tested.

A.1. Untuned version
 Notice that a database is embedded in the library
to select the appropriate set of parameters for the
BLAS OpenCL kernel at runtime. It first identifies
the device name and the device vendor by the
OpenCL `clGetDeviceInfo` function and uses the
retuned value to select a set of parameters for that
device. The default set of parameters for Adreno
GPU is tuned for Adreno 330. The performance of
the untuned version is shown in Figure 13.

A.2.Tuned version
 As instructed by the CLBlast manual, tuning the
performance for a new OpenCL device is needed to
find the best set of parameters for the OpenCL
kernel. An ideal set of parameters for Adreno 540
was obtained by running the tuner manually on the
devices and the best set of parameters were added to
the database. The matrix multiplication result of the
tuned version CLBlast is shown in Figure 14.

A.3.Tensorflow overhead
 To understand the overhead introduced by
Tensorflow, the computational time was measured
by incorporating it into the Tensorflow framework
versus running it as a normal OpenCL program. The
results are shown in Figure 15.

A.4.Problem encountered
 Mentioned in the previous section, a class
`clBLASTEngine` was created to incorporate the
library itself into the Tensorflow framework.
Introducing a new library into the Tensorlfow
framework is complicated by the usage of Bazel

Page ! of !15 85

Page ! of !16 85

Figure 13. The FP32 square matrix multiplication performance between CPU Eigen library and untuned
CLBlast library. Different colors show matrices of different size. Y-axis is the time needed in microsecond
(us).

FP32 square matrix multiplication performance between CPU Eigen library and
untuned CLBlast library

Ti
m

e
(u

s)

0

250000

500000

750000

1000000

cpu-Eigen-fp32 tf-Blast-fp32
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

16 32 64 128 256 512 1024 2048

FP32 square matrix multiplication performance between CPU Eigen library and
tuned CLBlast library

TI
m

e
(u

s)

0

250000

500000

750000

1000000

cpu-Eigen-fp32 tf-Blast-fp32-tuned
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

16 32 64 128 256 512 1024 2048

Figure 14. The FP32 square matrix multiplication performance between CPU Eigen library and tuned
CLBlast library. Different colors show matrices of different size. Y-axis is the time needed in microsecond
(us).

building system. A `native.new_http_archive` object
should be added the `workspace.blz` file in the
Tensorflow repository. It should contain the URL
link to the source code of the repository, the
SHA256 sum of the downloaded source code, and a
Bazel BUILD file that defines the compilation rules
for external libraries.
 Although a single run of Tensorflow MatMul
operation was successful on mobile GPU,
continuous runs of such operation resulted in
unexpected situation. The program halted with no
error message thrown and the process was killed by
Android OS after several seconds. The reason of
such unexpected error remained unknown and
required further investigation.

B. Experiment — Tensorflow MatMul test
 The purpose of this experiment is to verify the
correctness of `clMatMulEngine` and identify the
amount of overhead added to the Tensorflow
framework. A Tensorflow program `opencl-matmul`
was created with C++ API from scratch in this
experiment.
 `opencl-matmul` test was designed as follow.
On the desktop platform, two `tf.placeholder`
python objects were created using Tensorflow
Python API and passed to `tf.matmul` matrix
multiplication ops for calculation. The overall
computational graph was stored using
`tf.train.write_graph` API. On the Android platform,
the program rebuilds a computational graph by
reading the stored .pb file. Two Tensorflow 2D
Tensors were created and initialized with small

random floating points values. Both were loaded
into the runtime by the function call `session-
>Run()`, which also retuned the computed value in
another Tensor object. To verify the correctness of
the computation, two `Eigen::Matrix` objects were
created and initialized by the same value used in the
initialization of Tensors. Eventually, the matrix
multiplication results handled by the Eigen
framework, which depends on mobile CPU, was
compared with the one computed by Tensorflow
framework in a element-wise manner. For each
element in the multiplied matrix, absolute error was
accumulated and averaged to show the overall
differences.
 Various options are available for this test
including whether the matrices should be transposed
before multiplication, the number of iteration to run
the test, and the size of the matrices. This
experiment was used to load various kinds of
OpenCL MatMul kernels in the next section. The
source code can be found in Appendix F: Tensorflow
MatMul test — opencl-matmul source code.

C. Experiment —- OpenCL kernel optimization
 In this section, several OpenCL kernel
optimization techniques are tested. All experiments
carried out here were based on the `opencl-matmul`
program mentioned in previous section.

C.1.Base line performance
 In this experiment, the simplest OpenCL
MatMul kernel (called version 1) was tested against
the CPU implementation. The performance is shown

Page ! of !17 85

Figure 15. This is chart shows the Tensorflow overhead when incorporating the CLBLast library into the
framework. Different colors represent matrices of different size. Y-axis is the square matrix multiplication time
in microsecond (us). Left section is the CLBlast program running as a normal OpenCL program. Right section
is the performance of incorporating it into the Tensorflow framework.

Measurement of Tensorflow overhead
Ti

em
 (u

s)

0

250000

500000

750000

1000000

cl-Blast-fp32-tuned tf-Blast-fp32-tuned
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

16 32 64 128 256 512 1024 2048

Page ! of !18 85

FP32 square matrix multiplication performance between CPU Eigen library and
MatMul kernel 1

TI
m

e
(u

s)

0

250000

500000

750000

1000000

cpu-Eigen-fp32 tf-kernel 1-fp32
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

16 32 64 128 256 512 1024 2048

Figure 16. The FP32 square matrix multiplication performance between CPU Eigen library and OpenCL
kernel version 1. Different colors show matrices of different size. Y-axis is the time needed in microsecond
(us).

FP32 square matrix multiplication performance between kernel 1 and kernel 2

Va
lu

e
Ax

is

0

250000

500000

750000

1000000

tf-kernel 1-fp32 tf-kernel 2-fp32
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

16 32 64 128 256 512 1024 2048

Figure 17. The FP32 square matrix multiplication performance between OpenCL kernel version 1 and
OpenCL kernel version 2. Different colors show matrices of different size. Y-axis is the time needed in
microsecond (us).

in Figure 16. Kernel version 1 is considered as the
baseline performance because it’s the most
straightforward matrix multiplication kernel
available. The programming logic is as follow, a
work-item is responsible for an element in the
multiplied matrix. Each work-item performs row-
column element-wise multiplication independently
and sequentially just like normal human. The
performance is roughly 2~3 times slower than CPU
with matrix size equals to 1024.

C.2.Local memory
 The usage of local memory gives better
performance because the access latency is lower [1].
With this concept in mind, a new kernel called
MatMul kernel version 2, was developed and used
16 by 16 2D local memory. The performance
improvement between kernel version 1 and version 2
can be observed in Figure 17. The usage of local
memory dramatically decreases the number of bytes
loaded by a work-item. The performance is ~ 2 times
faster than kernel version 1 given matrix size equals
to 1024.
 The limitation of such kernel is the capability to
handle boundary cases. The local memory size if
fixed to 16*16 in this kernel, which gives
miscalculated the results given matrix size isn’t a
multiple of 16.

C.3.Transpose before Multiplication
 Inspired by the matrix multiplication example in
Qualcomm Adreno SDK, given a matrix
multiplication task C=A*B, all matrices are stored in

row-major arrays (default configuration in
Tensorflow) . The access pattern to matrix B isn’t
aligned. Such access pattern is considered bad
because of low cache hit rate.
 The engineering challenge is that no matter how
we arrange both of the matrices (A and B), one of
them must be accessed in an unaligned manner. The
solution to such problem is to transpose matrix B
before the matrix multiplication. As a result, the
access pattern to B_T (transposed) matrix is aligned
and the cache hit rate is high. This optimization
technique comes at the cost of additional matrix
transpose operation. From Snapdragon profiler, the
L2 cache read hit rate of this transposed-before-
multiply kernel reaches ~96% for a 64*64 square
matrix multiplication task.
 Also, due to the design limitation, this kernel is
designed to be a 1D kernel, each work-item is
mapped to a row in the multiplied matrix. Each
work-item caches a piece of data into the local
memory (coalesced memory access) and shared with
all the work-items within the same work-group to
minimize the memory load operation per work-item.
 In addition, this kernel fully utilizes the memory
bandwidth by vectorized load. The memory
bandwidth of Adreno 540 system is 128 bits, which
equals to float4 datatype. Thus, all memory load
operation in this kernel was designed to load 4 FP32
values from memory each time.
 Each work-item writes to a single element in the
multiplied matrix because the coalesced memory
store to global memory isn’t supported on Adreno

Page ! of !19 85

FP32 square matrix multiplication performance between kernel v2 and kernel v3

Ti
m

e
(u

s)

0

250000

500000

750000

1000000

tf-kernel 2-fp32 tf-kernel 3-fp32-float4
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

16 32 64 128 256 512 1024 2048

Figure 18. The FP32 square matrix multiplication performance between OpenCL kernel version 2 and
OpenCL kernel version 3. Different colors show matrices of different size. Y-axis is the time needed in
microsecond (us).

Page ! of !20 85

FP32 square matrix multiplication performance of kernel v3 with different vectorization ratio
Ti

m
e

(u
s)

0

250000

500000

750000

1000000

tf-kernel 3 float4 tf-kernel 3 float8 tf-kernel 3 float16

16 32 64 128 256 512 10242048 16 32 64 128 256 512 10242048 16 32 64 128 256 512 10242048

16 32 64 128 256 512 1024 2048

Figure 19. The FP32 square matrix multiplication performance of OpenCL kernel version 3 with different
vectorization ratio. Different colors show matrices of different size. Y-axis is the time needed in
microsecond (us).

FP32 square matrix multiplication performance of kernel v3 with OpenCL memory
object

Ti
m

e
(u

s)

0

250000

500000

750000

1000000

tf-kernel 3-fp32-float4-clBuffer tf-kernel 3-fp32-float4-clImage
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

16 32 64 128 256 512 1024 2048

Figure 20.5. The FP32 square matrix multiplication performance of OpenCL kernel version 3 with
different OpenCL memory object. Different colors show matrices of different size. Y-axis is the time
needed in microsecond (us).

5xx series GPU.
 With all optimization techniques mentioned
above, the performance between kernel version 2
and the newly developed kernel 3 is shown in Figure
18. Out-of-expectation, the new kernel is worse than
kernel 2.

C.4.Vectorization
 The result from previous section gave no
obvious improvement. The vectorization ratio was
further increased to observed the differences. The
vectorization ratio was increased from 4 to 16 to
observe the best ratio. Results shown on Figure 19.
The best vectorization ratio float datatype for this
kernel is 16.

C.5.Workgroup size
 Work group size is an OpenCL device
dependent parameter. It should be tuned for a new
device because the performance isn’t portable. The
work group size is related to the workload for each
work-item. GPU stays idle most of the time given
suboptimal work-group size, the amount of work
distributed to GPU isn’t able to keep it busy all the
time. As a result, the advantage of latency hiding
cannot be achieved and the performance is worse.
On the contrary, given an over-estimated work group
size, the performance remains the same because the
maximum throughput has been reached. Further
increase the work group size gives no better
performance. On Table 2, optimal work group size
for Adreno 540 GPU was found for different

vectorization ratio of kernel 3.

!
C.6.Different OpenCL memory object

 This optimization technique is specific to
Adreno GPU because of its GPU architecture
mentioned in the analyze of the problem section or
best illustrated in Figure 2. The optimization trick
was mentioned in a blog post on Qualcomm
developer network [20]. In order to fully utilize the
existing cache system, given a C=A*B matrix
multiplication problem, matrix A is allocated as an
OpenCL image object while matrix B is created as a
normal OpenCL buffer. The methodology of such
operation is to fully utilize the L1 cache located on
the texture processor. Ideally, with the help of L1
cache, fewer memory traffic will pass to the system
memory and the overall performance can be
increased.
 However, replacing the existing OpenCL buffer
object with image object is troublesome because the

Kernel name WG size

tf-kernel 3-fp32-float4 16

tf-kernel 3-fp32-float8 16

tf-kernel 3-fp32-float16 64

Table 2. The optimal work group size for MatMul
kernel 3 with different vectorization ratio.

Page ! of !21 85

Figure 20. The FP16 square matrix multiplication performance of OpenCL kernel version 3 with different
vectorization ratio. Different colors show matrices of different size. Y-axis is the time needed in
microsecond (us).

FP16 square matrix multiplication performance of kernel v3 with different vectorization ratio

Ti
m

e
(u

s)

0

250000

500000

750000

1000000

tf-kernel 3-fp16-float4 tf-kernel 3-fp16-float8 tf-kernel 3-fp16-float16

16 32 64 128 256 512 10242048 16 32 64 128 256 512 10242048 16 32 64 128 256 512 10242048

16 32 64 128 256 512
1024 2048

carefully designed kernel is incompatible. The
compromised option is to create an OpenCL image
memory object from the existing buffer object. The
results of such operations is shown on Figure 20.5.
 The Figure shows performance reduction. After
careful investigation into the GPU L1 and L2 cache
hit rate, it’s observed that it’s impossible to create a
true OpenCL image object from OpenCL buffer. The
converted OpenCL image object is treated as a
normal buffer object and nothing was loaded into the
texture processor or L1 cache memory. Perhaps a
new MatMul kernel should be developed to validate
the possibility of such optimization technique.

C.7.FP16 over FP32
 Claimed by Qualcomm, the throughput of FP16
is doubled compared to FP32. Additionally, data size
is half of FP32, which further shorten the memory
transfer time. The purpose of this experiment is to
investigate the possibility of training the MNIST
model on mobile GPU with FP16 precision.
 A new class `clQualcommFP16Engine` was
created with the following modification. All FP32
data would be converted to FP16 equivalent before
the matrix multiplication. Matrices filled with FP16
values were passed to the MatMul kernel arguments.
The FP16 kernel is similar to the FP32 one with
slight modification on memory load/store operation.
To save the effort of conversion, a FP32 variable
was used to store the results of FP16 multiplication.
Each element in the multiplied matrix if of type
FP32. The result is shown in Figure 20.
 On Figure 20, there’s minor improvement in
speed but the quality deteriorated as the number of
matrices grow. For square matrix multiplication of
size greater than 64. The per element accumulated
error reached 0.1. Depending on the range of
matrices data, the error fluctuated and the result
wasn’t stable. Furthermore, FP16 MatMul
implementation cannot be applied to an AI training
task because multiple sequential matrix

multiplication results in unacceptable error. Despite
the fact that this is the best performance achieved,
the training task in the following section will be
tested with a FP32 MatMul kernel.

C.8.Miscellaneous
 Other optimization techniques have been
implemented but no obvious performance
improvement was observed. In this section, the
miscellaneous optimization techniques are discussed
including avoid the usage of `size_t` in kernel code,
avoid integer module operation, use fast integer
multiplication, and loop unrolling.
 The reason why `size_t` data type should be
avoided in an OpenCL kernel is the complexity of
computing 64 bits integers. The `size_t` datatype
will be promoted automatically by the compiler to
64 bits integer on 64-bit OS. Adreno GPU has to
emulate a 64 bits integer with two 32 bits registers.
The additional resource consumption is unnecessary
if it can be replaced with other datatype. All integer
variables in the MatMul kernel was defined with the
smallest functional datatype. The resource allocated
for a variable just meets the required range of
operation. For instance, it’s impossible for matrices
size to exceed 2^16=65535. Thus, all related
variables were defined with the `cl_ushort` datatype,
which to some extent, might reduce the computation
and memory transfer time. Nonetheless, no obvious
improvement was observed.
 Integer module operation is expensive and
another way to get the same result is binary AND
operation. A mod 4 operation is equivalent to a
binary AND operation with 3 (0x11).
 Integer multiplication is expensive in Adreno
GPU. If the expected result falls within the range of
[-2^23, 2^23-1] (singed) or [0, 2^24-1] (unsigned),
the `mul24` instruction is faster because fewer bits
are calculated. However, the replacement of the
`mul24` instruction gave minor performance
improvement.

Page ! of !22 85

Figure 21. The computational graph for MLP model.

 Loop unrolling is a common optimization
technique to reduce the number branch instruction in
a loop. This is applied to MatMul kernel by adding a
compiler hint (#progma unroll) before a loop. A
compiler will unroll the loop if it predicts such
operation will increase the performance. However,
loop unrolling gives no obvious improvement in this
case.

D. Training MNIST dataset with various AI
models

 With all MatMul OpenCL kernel tested in the
previous section, training an AI model on mobile
GPU is feasible and the result will be discussed in
this section.

D.1.AI model structure
 In this experiment, two AI model, MLP and
DNN, will be trained. The structure of two AI
models are defined by the following Tensorflow
computational graph. The structure of MLP model is
shown on Figure 21, and the DNN model shown on
Figure 22. Refer to the analyze of problem section to
revisit analyze of MatMul operation in each AI
model.

D.2.The design of pure training program
 The purpose of this pure training program is to
measure the time needed for training. Batches of
training data will be loaded into Tensorflow runtime
for computation. After the training process is done,
the time passed will be calculated. Eventually, the
testing samples will be loaded for 100 samples at a
time. The overall accuracy is accumulated and
averaged for the final model accuracy. The source of
this pure training program can be found in Appendix
C: MNIST pure trainer program source code.

D.3.The design of training logger program
 During the development process, it’s hard to
debug an AI training program without understanding
the current training accuracy. Thus, this program is
designed to probe the trained model after a batch of
training data is used to trained the model. The
probed accuracy will be logged on mobile devices
and viewed on desktop computer to inspect the
training progress over iterations. Expectedly, this
program is time consuming because testing a model
for each training batch is computationally expensive.
In the following discussion, the training progress on
desktop computer is set as the ground truth to

Page ! of !23 85

Figure 22. The computational graph for DNN model.

Page ! of !24 85

Figure 24. The DNN training accuracy on desktop computer.

Figure 25. The MLP training accuracy on mobile CPU.

Figure 23. The MLP training accuracy on desktop computer.

ChengWei

Page ! of !25 85

Figure 26. The DNN training accuracy on mobile CPU.

Figure 27. The MLP training accuracy on mobile GPU.

Figure 28. The DNN training accuracy on mobile GPU.

compare with the training progress on mobile CPU/
GPU. The source code can be found in Appendix D:
MNIST training logger program source code.

D.4.Training accuracy
 Figure 23 and Figure 24 show the MLP and
DNN model training progress on desktop CPU.
Figure 25 (MLP) and Figure 26 (DNN) show the
training progress on mobile CPU. Figure 27 (MLP)
and Figure 28 (DNN) show the training progress on
mobile GPU. From Figure 23 to 28, it’s obvious that
the training results on mobile GPU is equivalent to
the results obtained from desktop computer or
mobile CPU. Which further proves that training on
mobile GPU is successful, and the implementation
reaches the project goal.

D.5.Training time
 The pure training performance on mobile CPU
is shown in Table 3. The pure training performance
on mobile GPU with different MatMul kernel
implementations are shown from Table 4 to 6.
Notice that the batch size is different for MLP and
DNN model because the Tensorflow optimizer
cannot reach a convergent result given large batch
size in MLP model.
 Observed from the results, the training accuracy
are the same for both mobile CPU and GPU. The
performance of CPU is still way faster than mobile
GPU. The explanation for such phenomenon will be
discussed in the discussion section.
 Compared the results on Table 5 and 6, The
DNN training time decreased by 26% because of
higher vectorization ratio. At the same time, the
MLP training time decreased by merely 6%. Figure

29. visualizes the results of training time on mobile
GPU.

Table 3. Training performance on mobile CPU

Model Name Overall
Accuracy
(%)

Training
Time (s)

Batch Size

MLP 78.3435 5.34335 100

DNN 96.7990 216.708 1000

Table 4. Training performance on mobile GPU

Model Name Overall
Accuracy
(%)

Training
Time (s)

Batch Size

Kernel Used `MatMul_TN_1D_Fp32_Float4` +
`MatTrans_1D_Fp32_Float4`

MLP 79.2828 56.3333 100

DNN 96.7909 508.305 1000

Table 5. Training performance on mobile GPU

Model Name Overall
Accuracy
(%)

Training
Time (s)

Batch Size

Kernel Used MatMul_TN_1D_Fp32_Float8` +
`MatTrans_1D_Fp32_Float8

MLP 80.0404 56.5589 100

DNN 97.2151 527.089 1000

Page ! of !26 85

MNIST training time on mobile GPU

Ti
m

e
(s

)

0

150

300

450

600

tf-kernel3-fp32-float4 tf-kernel3-fp32-float8 tf-kernel3-fp32-float16 CPU
MLP DNN MLP DNN MLP DNN MLP DNN

MLP DNN

Figure 29. The MNIST training performance. Blue bar represents the time for MLP, and green for
DNN. Y-axis is the time needed in second .

E. GPU Computing capability
 This section explores the computing capability
of mobile GPU/CPU by measuring the floating point
operations per second in the square matrix
multiplication benchmark.
 From GeekBench [21], the throughput for
Snapdragon 835 CPU is roughly about 11.5
GFLOPS. Based on our experiments, the throughput
of was calculated as follow. For a square matrices
multiplication task, the number of floating point
operations roughly equals to N^3. As a result, the
computed throughput is shown on Figure 30. The
result obtained is slightly lower than GeekBench’s
measurement, the maximum throughput for CPU is
~7 GFLOPS, and GPU is ~ 6 GFLOPS.

VIII.DISCUSSION OF RESULTS
A. Experiment — CLBlast evaluation

 The tuned version of CLBlast OpenCL BLAS
library is by far the fastest kernel tested on Adreno
540 GPU. In Figure 14. the performance of the tuned
CLBlast library is slower than CPU if matrix size is
smaller than 1024. The reason is as follow, profiled
by the Snapdragon profiler, the actual computation
consists of a small portion of time. A large portion of
time (1272428 us ~= 1.2 sec) was spent on the
compilation of OpenCL kernel source code as shown
in Figure 31. Since the performance measurements
in Figure 14. were averaged for 10 iterations. As a
result, given the actual computation consists of a
small portion of time (i.e. matrix size < 1024), the
kernel compilation time boosts up the average time
significantly.
 The compilation of BLAS OpenCL kernel
source code in CLBlast library could be further
identified by the measurement of Tensorflow
overhead in Figure 15. The excessive time is
contributed by the compilation of kernel source
code. The CLBlast library is designed in a smart way
such that the compilation process is needed only for
the first run. The compiled binary will be cached in
the system and a new OpenCL program will be
created from binary instead of from source.

B. Experiment —- OpenCL kernel optimization
 Among all kernels implemented in this paper,
the 1D kernel with `transpose before multiply`
method gives the best performance. For different
ratio of vectorization, the float16 data type is the

Table 6. Training performance on mobile GPU

Model Name Overall
Accuracy
(%)

Training
Time (s)

Batch Size

Kernel Used MatMul_TN_1D_Fp32_Float16` +
`MatTrans_1D_Fp32_Float16

MLP 78.8788 53.1919 100

DNN 96.6364 388.855 1000

Page ! of !27 85

Figure 31. The time spent on building CLBlast OpenCL kernel.

Throughput of mobile CPU/GPU

G
FL

PO
S

0

2

4

6

8

Matrix Size
16 32 64 128 256 512 1024 2048

Snapdragon 835 Adreno 540 GPU

Figure 30. The throughput of Snapdragon 835 CPU and Adreno 540 GPU in square matrix
multiplication task. X-axis is the size of the matrix. Y-axis is the throughput in GFLOPS.

most efficient. In additional, miscellaneous
optimization techniques were applied. Notice that
not all optimization strategy was integrated
successfully, changing from FP32 multiplication
FP16 wasn’t successful because of the deteriorated
precision, and replacing memory object from
OpenCL buffer with image gave worse performance.
Combined, MatMul kernel version 3 (FP32) with
vectorization ratio of 16 gives the best performance
among all manually designed kernels (CLBlast
excluded). The performance comparison is shown on
Figure 32. Still, mobile GPU is slower than mobile
CPU. However, some additional factors should be
taken into considerations including the theoretical
throughput of mobile CPU/GPU, and the memory
transfer time between host and OpenCL device.

C. Training MNIST dataset with various AI
models

 Compared with the MNIST training results on
desktop computer, mobile CPU or GPU is capable of
reaching the same model accuracy. The difference of
growth rate between mobile platform and desktop
platform is unexpected, the training accuracy
increases dramatically on desktop computer while it
grows slowly on mobile platform. Perhaps there’re
some API level optimization for Tensorflow Python
API that causes the difference.

IX.LIMITATION

 The limitations of this project is separated into
software part and hardware part.
 For the software design of clMatMulEngine, an
OpenCL context object is created for each matrix
multiplication operation in Tensorflow runtime.
Many OpenCL host side objects are created and
released after computation. Such design choice isn’t
efficient because a context object, device object,
command queue object can be reused in the next
operation. In other words, the OpenCL host side
objects should be kept for the same OpenCL
devices. Host-side initialization should only be done
once for a device. During the research phase of this
project, such limitation was identified. The original
initiative was to build a well-integrated OpenCL
version of Tensorflow. The plan was cancelled
because the estimated amount of engineering work is
beyond the workload of this project. Such operation
requires deep integration of OpenCL into the
Tensorflow framework.
 For the hardware limitation, the closed source
architecture of Adreno GPU makes it challenging to
verify the optimization strategy. For instance, the
info about the size of the on-chip local memory, the
size of L2 cache, the size of L1 cache aren’t revealed
by Qualcomm.

X. CONCLUSION
 The advancement of computing power on
mobile devices and the recent progress in AI push

Page ! of !28 85

FP32 Performance comparison between CPU & MatMul kernel v3 with float16
vectorization

Ti
m

e
(u

s)

0

1000000

2000000

3000000

4000000

cpu-Eigen-fp32 tf-kernel 3-fp32-float16
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048

16 32 64 128 256 512 1024 2048

Figure 32. The FP32 square matrix multiplication performance of OpenCL kernel version 3 with
float16 vectorization and CPU. Different colors show matrices of different size. Y-axis is the time
needed in microsecond (us).

the computation toward the users’ end. In this report,
the possibility of training AI models on mobile
devices was explored by embedding OpenCL code
into the Tensorflow framework. Also multiple
benchmarks were tested on the mobile platform to
understand the characteristics of the heterogeneous
computing platform. The training and inference
processes on mobile devices were accelerated by
off-loading the intensive computation from mobile
CPU to GPU. Also, training a MNIST dataset on
mobile GPU was successful. Despite the matrix
multiplication task was slower on mobile GPU. The
best version of the manually designed OpenCL
kernel outperformed the baseline performance by
2.16 times for square matrix multiplication of size
1024. Further investigation is needed to unveil the
underlying hardware architecture of mobile GPU,
and explore the capability of mobile AI applications.

Page ! of !29 85

XI.REFERENCE
1. Moustafa, A., et al., RSTensorFlow: GPU
Enabled TensorFlow for Deep Learning on
Commodity Android Devices. Proceedings of the
1st International Workshop on Deep Learning for
Mobile Systems and Applications. 2017: ACM.
2. Tensorflow. Tensorflow Lite. Available from:
https://www.tensorflow.org/mobile/tflite/.
3. Tensorflow. Tensorflow Architecture. Available
from: https://www.tensorflow.org/extend/
architecture.
4. Jia, Y., Learning semantic image
representations at a large scale. 2014: University of
California, Berkeley.
5. Software, C. ComputeCpp. Available from:
https://github.com/codeplaysoftware/computecpp-
sdk.
6. triSYCL. Available from: https://github.com/
triSYCL/triSYCL.
7. Žužek, P., Implementacija knjiˇznice SYCL za
heterogeno raˇcunanje. 2016.
8. Žužek, P. sycl-gtx Library. 2016; Available
from: https://github.com/ProGTX/sycl-gtx.
9. Qualcomm. Tensorflow optimized for
Snapdragon Hexagon 682 DSP. Available from:
https://www.qualcomm.com/news/onq/2017/01/09/
tensorflow-machine-learning-now-optimized-
snapdragon-835-and-hexagon-682-dsp.
10. Qualcomm. Snapdragon Neural Processing
Engine. Available from: https://
developer.qualcomm.com/software/snapdragon-
neural-processing-engine.
11. Qualcomm Snapdragon(TM) Mobile Platform
OpenCL General Programming and Optimization.
2017.
12. ARM. ARM Mali GPU OpenCL Driver
Developer Guide 3.2. Available from: https://
developer.arm.com/docs/100614/latest/
introduction/about-opencl.
13. Qualcomm. Snapdragon Profiler. Available
from: https://developer.qualcomm.com/software/
snapdragon-profiler.
14. Khronos. The OpenCL Specification. 2018;
Available from: https://www.khronos.org/registry/
OpenCL/specs/opencl-2.2.html.
15. McVoy, L.W. and C. Staelin. lmbench: Portable
Tools for Performance Analysis. in USENIX annual
technical conference. 1996. San Diego, CA, USA.
16. Konstantinidis, E. and Y. Cotronis, A
quantitative roofline model for GPU kernel
performance estimation using micro-benchmarks
and hardware metric profiling. Journal of Parallel
and Distributed Computing, 2017(107): p. 37-56.
17. wichtounet. Simple C++ reader for MNIST
dataset. 2018; Available from: https://github.com/
wichtounet/mnist.
18. Tensorboar logger. Available from: https://
github.com/RustingSword/tensorboard_logger.
19. Nugteren, C., CLBLast: A tuned openCL BLAS
library. arXiv preprint arXiv:1705.05249, 2017.
20. Qualcomm. Matrix Multiply on Adreno GPUs.
2016; Available from: https://

developer.qualcomm.com/blog/matrix-multiply-
adreno-gpus-part-1-opencl-optimization.
21. GeekBench. The Qualcomm Snapdragon 835
Performance Preview. Available from: https://
www.anandtech.com/show/11201/qualcomm-
snapdragon-835-performance-preview/2.

Page ! of !30 85

XII.APPENDIX
A. clMatMulEngine design source code

Page ! of !31 85

// clMatMulEngine<float>

// |

// v

// clQualcommFP32Engine <---- binaryLoaderInterface

// clMatMulEngine<float>

// |

// v

// clQualcommFP16Engine <---- binaryLoaderInterface

// clMatMulEngine<float>

// |

// v

// clBLASTEngine

#ifndef MATMUL_CL_FUNCTOR_H_

#define MATMUL_CL_FUNCTOR_H_

#include <fstream>

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"

#include "tensorflow/core/framework/tensor.h"

#include "tensorflow/core/framework/tensor_types.h"

#include "tensorflow/core/lib/hash/hash.h"

#include "tensorflow/core/platform/logging.h"

#define CL_USE_DEPRECATED_OPENCL_1_2_APIS // to disable deprecation warnings

// Includes the CLBlast library (C interface)

#include "clblast_c.h"

//

// OpenCL status checker

#define CL_CHECK(_expr) \

 { \

 cl_int _err = _expr; \

 if(_err != CL_SUCCESS) { \

 std::cerr << "OpenCL Error: " << #_expr << " returned " << (int)_err \

 << std::endl; \

 } \

 }

// OpenCL return type checker

#define CL_CHECK_ERR(_expr) \

 ({ \

 cl_int _err = CL_INVALID_VALUE; \

 decltype(_expr) _ret = _expr; \

 if (_err != CL_SUCCESS) { \

 std::cerr << "OpenCL Error: " << #_expr << " returned " << (int)_err \

 << std::endl; \

 } \

 _ret; \

 })

//

Page ! of !32 85

// float to cl_half conversions

#ifndef INFINITY

 #define INFINITY 1.0/0.0

#endif

#ifndef NAN

 #define NAN 0.0/0.0

#endif

typedef union {

 int32_t i;

 float f;

} FloatConvUnion;

cl_half float_to_cl_half(float value){

 FloatConvUnion u;

 u.f = value;

 cl_half half = (u.i >> 16) & 0x8000; // sign

 cl_half fraction = (u.i >> 12) & 0x007ff; // fraction with extra bit for rounding

 cl_half exponent = (u.i >> 23) & 0xff; // exponent

 if(exponent < 0x0067) // Return signed zero if zero or value is too small for denormal half

 return half;

 if(exponent > 0x008e){// value was NaN or Inf

 half |= 0x7c00u; // Make into inf

 half |= exponent == 255 && (u.i & 0x007fffffu); // If value was NaN make this into NaN

 return half;

 }

 if(exponent < 0x0071){// Denormal

 fraction |= 0x0800u;

 // rounding

 half |= (fraction >> (0x0072 - exponent)) + ((fraction >> (0x0071 - exponent)) & 1);

 return half;

 }

 half |= ((exponent - 0x0070) << 10) | (fraction >> 1);

 half += fraction & 1;// rounding

 return half;

}

//

// clSetKernelArg Helper

#define SET_GEMM_TN_KERNEL_ARG(M, K, N, clMemA, clMemB, clMemC, localSize,
localMemType, \

 iter) \

 CL_CHECK(clSetKernelArg(clGemmKernel, 0, sizeof(cl_ushort), &M)); \

 CL_CHECK(clSetKernelArg(clGemmKernel, 1, sizeof(cl_ushort), &K)); \

 CL_CHECK(clSetKernelArg(clGemmKernel, 2, sizeof(cl_ushort), &N)); \

 CL_CHECK(clSetKernelArg(clGemmKernel, 3, sizeof(cl_mem), &clMemA)); \

 CL_CHECK(clSetKernelArg(clGemmKernel, 4, sizeof(cl_mem), &clMemB)); \

Page ! of !33 85

 CL_CHECK(clSetKernelArg(clGemmKernel, 5, sizeof(cl_mem), &clMemC)); \

 CL_CHECK(clSetKernelArg(clGemmKernel, 6, localSize * sizeof(localMemType), NULL)); \

 CL_CHECK(clSetKernelArg(clGemmKernel, 7, sizeof(cl_ushort), &iter)); \

//

// clSetKernelArg Helper

#define SET_TRANS_KERNEL_ARG(ROW, COL, clMem, clMem_T, iter) \

 CL_CHECK(clSetKernelArg(clTransKernel, 0, sizeof(cl_ushort), &ROW)); \

 CL_CHECK(clSetKernelArg(clTransKernel, 1, sizeof(cl_ushort), &COL)); \

 CL_CHECK(clSetKernelArg(clTransKernel, 2, sizeof(cl_mem), &clMem)); \

 CL_CHECK(clSetKernelArg(clTransKernel, 3, sizeof(cl_mem), &clMem_T)); \

 CL_CHECK(clSetKernelArg(clTransKernel, 4, sizeof(cl_ushort), &iter)); \

using namespace std;

namespace tensorflow {

 typedef Eigen::ThreadPoolDevice CPUDevice;

 // clMatMulEngine abstract class (interface), computing datatype T

 template<class T> class clMatMulEngine {

 public:

 // Concrete methods

 // clMatMulEngine initializaiotn function

 cl_int hostInit(

 typename functor::MatMulTypes<T>::in_type in0,

 typename functor::MatMulTypes<T>::in_type in1,

 typename functor::MatMulTypes<T>::out_type out,

 const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair)

 {

 // Matrix dimension init

 RowA = in0.dimension(0);

 ColA = in0.dimension(1);

 RowB = in1.dimension(0);

 ColB = in1.dimension(1);

 RowC = out.dimension(0);

 ColC = out.dimension(1);

 // Matrix size checking

 int matrixSizeLimit = 0xffff; // Maximum value for cl_ushort

 if(RowA > matrixSizeLimit ||

 ColA > matrixSizeLimit ||

 RowB > matrixSizeLimit ||

 ColB > matrixSizeLimit ||

 RowC > matrixSizeLimit ||

 ColC > matrixSizeLimit)

 {

 LOG(ERROR) << "Matrix of Size Larger than " << matrixSizeLimit <<

 " isn't supported";

 }

 // Matrix size init

 a_size = sizeof(T) * RowA * ColA;

 b_size = sizeof(T) * RowB * ColB;

Page ! of !34 85

 c_size = sizeof(T) * RowC * ColC;

 // Matrix transpose

 a_traspose = (dim_pair[0].first == 0) ? true : false;

 b_traspose = (dim_pair[0].second == 1) ? true : false;

 // Query platforms

 CL_CHECK(clGetPlatformIDs(1, &platform, NULL));

 // Query devices

 CL_CHECK(clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &clDevice, NULL));

 // Create context

 clCtx = CL_CHECK_ERR(clCreateContext(NULL, 1, &clDevice, NULL, NULL, &_err));

 // Create command clQueue

 clQueue = CL_CHECK_ERR(clCreateCommandQueue(clCtx, clDevice, 0, &_err));

 return CL_SUCCESS;

 }

 // Print debug info

 void debug(bool print=true){

 if(print){

 LOG(INFO) << "Dealing with datatype of size " << sizeof(T);

 LOG(INFO) << "MatrixA = [" << RowA << "," << ColA << "]";

 LOG(INFO) << "MatrixB = [" << RowB << "," << ColB << "]";

 LOG(INFO) << "MatrixC = [" << RowC << "," << ColC << "]";

 }

 }

 // Print input-output matrices

 void printMatrix(

 typename functor::MatMulTypes<T>::in_type in0,

 typename functor::MatMulTypes<T>::in_type in1,

 typename functor::MatMulTypes<T>::out_type out)

 {

 LOG(INFO) << "MatMul Matrix details";

 LOG(INFO) << std::endl << in0;

 LOG(INFO) << std::endl << in1;

 LOG(INFO) << std::endl << out;

 }

 // Virtual methods

 // Release all OpenCL related resourcse

 virtual cl_int clEnd() = 0;

 // Load computed results back to memroy

 virtual cl_int memLoad(typename functor::MatMulTypes<T>::out_type out) = 0;

 // OpenCL memeory object init

 virtual cl_int memInit(typename functor::MatMulTypes<T>::in_type in0,

 typename functor::MatMulTypes<T>::in_type in1) = 0;

Page ! of !35 85

 protected:

 // Default matrix dimension

 size_t RowA = 0;

 size_t ColA = 0;

 size_t RowB = 0;

 size_t ColB = 0;

 size_t RowC = 0;

 size_t ColC = 0;

 // Matrix tranpose info

 bool a_traspose;

 bool b_traspose;

 // Default matrix size

 size_t a_size = 0;

 size_t b_size = 0;

 size_t c_size = 0;

 // OpenCL host side object

 cl_platform_id platform;

 cl_device_id clDevice;

 cl_context clCtx;

 cl_command_queue clQueue;

 // Timer

 std::chrono::high_resolution_clock::time_point timer;

 void startTimer(){

 timer = std::chrono::high_resolution_clock::now();

 }

 double read_us(){

 auto elapsed_time = std::chrono::high_resolution_clock::now() - timer;

 return std::chrono::duration<double, std::micro>(elapsed_time).count();

 }

 // Performance calculator

 void getPerformance(){

 std::ofstream ofs ("performance.log", std::ios_base::app);

 long double delta_t = read_us() * 1e-6; // delta_t in second

 double bandwidth = 1e-9*(a_size+b_size+c_size)/delta_t;

 ofs << bandwidth << " GB/s, ";

 long double gflops = 1e-9*(RowA*ColA*RowB*ColB*RowC*ColC)/delta_t;

 ofs << gflops << " GFLOPS\n";

 ofs.close();

 }

 }; // class clMatMulEngine

Page ! of !36 85

 // binaryLoaderInterface abstract class (interface)

 class binaryLoaderInterface{

 public:

 // Virtual method

 // Compile & Compute the results

 virtual cl_int loadFromBinaryCompute() = 0;

 protected:

 // Concrete methods

 // Read OpenCL binary file from disk

 int read_file(unsigned char **output, size_t *size, const char *name)

 {

 FILE* fp = fopen(name, "rb");

 if (!fp) {

 LOG(ERROR) << "Fail to read cl kernel binary " << std::string(name);

 return -1;

 }

 fseek(fp, 0, SEEK_END);

 *size = ftell(fp);

 fseek(fp, 0, SEEK_SET);

 *output = (unsigned char *)malloc(*size);

 if (!*output) {

 fclose(fp);

 return -1;

 }

 fread(*output, *size, 1, fp);

 fclose(fp);

 return 0;

 }

 // Show clKernel object info

 void debugOpenclKernel(cl_kernel cl_kernel, cl_device_id cl_device){

 // Kernel info

 size_t wgSize = 0;

 size_t compiledWgSize[3];

 cl_ulong localMemSize = 0;

 size_t perfHint;

 cl_ulong privateMemSize = 0;

 CL_CHECK(clGetKernelWorkGroupInfo(cl_kernel, cl_device,

 CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wgSize, NULL));

 CL_CHECK(clGetKernelWorkGroupInfo(cl_kernel, cl_device,

 CL_KERNEL_COMPILE_WORK_GROUP_SIZE, 3 * sizeof(size_t),

 &compiledWgSize, NULL));

 CL_CHECK(clGetKernelWorkGroupInfo(cl_kernel, cl_device,

 CL_KERNEL_LOCAL_MEM_SIZE, sizeof(cl_ulong), &localMemSize,

 NULL));

 CL_CHECK(clGetKernelWorkGroupInfo(cl_kernel, cl_device,

Page ! of !37 85

 // binaryLoaderInterface abstract class (interface)

 class binaryLoaderInterface{

 public:

 // Virtual method

 // Compile & Compute the results

 virtual cl_int loadFromBinaryCompute() = 0;

 protected:

 // Concrete methods

 // Read OpenCL binary file from disk

 int read_file(unsigned char **output, size_t *size, const char *name)

 {

 FILE* fp = fopen(name, "rb");

 if (!fp) {

 LOG(ERROR) << "Fail to read cl kernel binary " << std::string(name);

 return -1;

 }

 fseek(fp, 0, SEEK_END);

 *size = ftell(fp);

 fseek(fp, 0, SEEK_SET);

 *output = (unsigned char *)malloc(*size);

 if (!*output) {

 fclose(fp);

 return -1;

 }

 fread(*output, *size, 1, fp);

 fclose(fp);

 return 0;

 }

 // Show clKernel object info

 void debugOpenclKernel(cl_kernel cl_kernel, cl_device_id cl_device){

 // Kernel info

 size_t wgSize = 0;

 size_t compiledWgSize[3];

 cl_ulong localMemSize = 0;

 size_t perfHint;

 cl_ulong privateMemSize = 0;

 CL_CHECK(clGetKernelWorkGroupInfo(cl_kernel, cl_device,

 CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wgSize, NULL));

 CL_CHECK(clGetKernelWorkGroupInfo(cl_kernel, cl_device,

 CL_KERNEL_COMPILE_WORK_GROUP_SIZE, 3 * sizeof(size_t),

 &compiledWgSize, NULL));

 CL_CHECK(clGetKernelWorkGroupInfo(cl_kernel, cl_device,

 CL_KERNEL_LOCAL_MEM_SIZE, sizeof(cl_ulong), &localMemSize,

 NULL));

 CL_CHECK(clGetKernelWorkGroupInfo(cl_kernel, cl_device,

Page ! of !38 85

 // Return CL_SUCCESS if all resources are released successfully

 return CL_SUCCESS;

 }

 cl_int memLoad(typename functor::MatMulTypes<float>::out_type out){

 // Use the map function to return clBufferA pointer to the host <= blocking

 clHostPtrC = (cl_float *) clEnqueueMapBuffer(clQueue, clBufferC, CL_TRUE,

 CL_MAP_READ, 0, c_size, 0, NULL, NULL, NULL);

 // Read computed result back to host

 for(auto idx = 0 ; idx < RowC*ColC ; idx++){

 out.data()[idx] = clHostPtrC[idx];

 }

 // Release OpenCL resources

 CL_CHECK(clEnd());

 // Return if the results are loaded to memory & OpenCL resources are released

 return CL_SUCCESS;

 }

 cl_int memInit(

 typename functor::MatMulTypes<float>::in_type in0,

 typename functor::MatMulTypes<float>::in_type in1)

 {

 // Use zero copy to avoid additional memeory copy

 // Matrix A

 clBufferA = clCreateBuffer(clCtx, CL_MEM_HOST_WRITE_ONLY |
CL_MEM_ALLOC_HOST_PTR,

 a_size, NULL, NULL);

 // Use the map function to return clBufferA pointer to the host <= non-blocking

 clHostPtrA = (cl_float *) clEnqueueMapBuffer(clQueue, clBufferA, CL_FALSE,

 CL_MAP_WRITE, 0, a_size, 0, NULL,

 &mapBufferEvents[0], NULL);

 // Matrix B

 clBufferB = clCreateBuffer(clCtx, CL_MEM_HOST_WRITE_ONLY |
CL_MEM_ALLOC_HOST_PTR,

 b_size, NULL, NULL);

 // Use the map function to return clBufferA pointer to the host <= non-blocking

 clHostPtrB = (cl_float *) clEnqueueMapBuffer(clQueue, clBufferB, CL_FALSE,

 CL_MAP_WRITE, 0, b_size, 0, NULL,

 &mapBufferEvents[1], NULL);

 // Create GPU buffer for transposed matrices only if needed

 if(a_traspose){

 clBufferA_T = clCreateBuffer(clCtx, CL_MEM_HOST_NO_ACCESS, a_size, NULL,
NULL);

 }

 if(!b_traspose){

 clBufferB_T = clCreateBuffer(clCtx, CL_MEM_HOST_NO_ACCESS, b_size, NULL,
NULL);

Page ! of !39 85

 }

 // Wait for completion

 CL_CHECK(clWaitForEvents(2, mapBufferEvents));

 // Host update the buffer using pointer clHostPtrA in host address space

 for(auto idx = 0 ; idx < RowA*ColA ; idx ++){

 clHostPtrA[idx] = in0.data()[idx];

 }

 // Host update the buffer using pointer clHostPtrB in host address space

 for(auto idx = 0 ; idx < RowB*ColB ; idx ++){

 clHostPtrB[idx] = in1.data()[idx];

 }

 // Unmap the object -> Used in the OpenCL kernel

 CL_CHECK(clEnqueueUnmapMemObject(clQueue, clBufferA, (void*) clHostPtrA,

 0, NULL, &unMapBufferEvents[0]));

 // Unmap the object -> Used in the OpenCL kernel

 CL_CHECK(clEnqueueUnmapMemObject(clQueue, clBufferB, (void*) clHostPtrB,

 0, NULL, &unMapBufferEvents[1]));

 // Matrix C

 clBufferC = clCreateBuffer(clCtx, CL_MEM_HOST_READ_ONLY |
CL_MEM_ALLOC_HOST_PTR,

 c_size, NULL, NULL);

 // Wait for completion

 CL_CHECK(clWaitForEvents(2, unMapBufferEvents));

 return CL_SUCCESS;

 }

 cl_int loadFromBinaryCompute()

 {

 unsigned char* clKernelBinaryFile = NULL;

 size_t clKernelBinSize = 0;

 // Read compiled OpenCL kernel binary file from disk

 read_file(&clKernelBinaryFile, &clKernelBinSize, "matmul.bin");

 // Create an OpenCL program object from binary

 clProgram = CL_CHECK_ERR(clCreateProgramWithBinary(clCtx, 1, &clDevice,

 &clKernelBinSize,

 (const unsigned char **)&clKernelBinaryFile,

 NULL, &_err));

 // OpenCL build program

 CL_CHECK(clBuildProgram(clProgram, 1, &clDevice, "-cl-fast-relaxed-math" , NULL,
NULL));

 // Create OpenCL GEMM kernel object

 // clGemmKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatMul_TN_1D_Fp32_Float4" , &_err));

Page ! of !40 85

 // clGemmKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatMul_TN_1D_Fp32_Float8" , &_err));

 clGemmKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatMul_TN_1D_Fp32_Float16" , &_err));

 // Create OpenCL Transpose kernel object

 // clTransKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatTrans_1D_Fp32_Float4" , &_err));

 // clTransKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatTrans_1D_Fp32_Float8" , &_err));

 clTransKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatTrans_1D_Fp32_Float16" , &_err));

 cl_ushort gemmKernelIter;

 cl_ushort transKernelIter;

 startTimer();

 // Handle Matrices Transpose

 if(a_traspose && b_traspose){ // Transpose A: yes, Transpose B: yes

 transKernelIter = ColA >> 4;

 gemmKernelIter = RowA >> 4;

 // Transpose A

 SET_TRANS_KERNEL_ARG(RowA, ColA, clBufferA, clBufferA_T, transKernelIter);

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

 &RowA, NULL, 0, NULL, &transKernelEvent[0]));

 SET_GEMM_TN_KERNEL_ARG(ColA, RowA, RowB, clBufferA_T, clBufferB,

 clBufferC, ColA, float, gemmKernelIter);

 const size_t global = ColA;

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

 &global, NULL, 1, transKernelEvent, &gemmKernelEvent));

 CL_CHECK(clWaitForEvents(1, &gemmKernelEvent));

 }else if(a_traspose && !b_traspose){ // Transpose A: yes, Transpose B: no

 transKernelIter = ColA >> 4;

 gemmKernelIter = RowA >> 4;

 // Transpose A

 SET_TRANS_KERNEL_ARG(RowA, ColA, clBufferA, clBufferA_T, transKernelIter);

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

 &RowA, NULL, 0, NULL, &transKernelEvent[0]));

 transKernelIter = ColB >> 4;

 // Transpose B

 SET_TRANS_KERNEL_ARG(RowB, ColB, clBufferB, clBufferB_T, transKernelIter);

Page ! of !41 85

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

 &RowB, NULL, 0, NULL, &transKernelEvent[1]));

 SET_GEMM_TN_KERNEL_ARG(ColA, RowA, ColB, clBufferA_T, clBufferB_T,

 clBufferC, RowA, float, gemmKernelIter);

 const size_t global = ColA;

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

 &global, NULL, 2, transKernelEvent, &gemmKernelEvent));

 CL_CHECK(clWaitForEvents(1, &gemmKernelEvent));

 }else if(!a_traspose && b_traspose){ // Transpose A: no, Transpose B: yes

 gemmKernelIter = ColA >> 4;

 SET_GEMM_TN_KERNEL_ARG(RowA, ColA, RowB, clBufferA, clBufferB,

 clBufferC, ColA, float, gemmKernelIter);

 const size_t global = RowA;

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

 &global, NULL, 0, NULL, &gemmKernelEvent));

 CL_CHECK(clWaitForEvents(1, &gemmKernelEvent));

 }else if(!a_traspose && !b_traspose){ // Transpose A: no, Transpose B: no

 transKernelIter = ColB >> 4;

 gemmKernelIter = ColA >> 4;

 // Transpose B

 SET_TRANS_KERNEL_ARG(RowB, ColB, clBufferB, clBufferB_T, transKernelIter);

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

 &ColA, NULL, 0, NULL, &transKernelEvent[0]));

 SET_GEMM_TN_KERNEL_ARG(RowA, ColA, ColB, clBufferA, clBufferB_T,

 clBufferC, ColA, float, gemmKernelIter);

 const size_t global = RowA;

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

 &global, NULL, 1, transKernelEvent, &gemmKernelEvent));

 CL_CHECK(clWaitForEvents(1, &gemmKernelEvent));

 }

 getPerformance();

 return CL_SUCCESS;

 }

 protected:

 // OpenCL memeory object

Page ! of !42 85

 cl_mem clBufferA;

 cl_mem clBufferA_T;

 cl_mem clBufferB;

 cl_mem clBufferB_T;

 cl_mem clBufferC;

 // Host memory data

 cl_float * clHostPtrA;

 cl_float * clHostPtrB;

 cl_float * clHostPtrC;

 // OpenCL events

 cl_event gemmKernelEvent;

 cl_event transKernelEvent[2];

 cl_event mapBufferEvents[2];

 cl_event unMapBufferEvents[2];

 // OpenCL program object

 cl_program clProgram;

 // OpenCL kernel object

 cl_kernel clGemmKernel;

 cl_kernel clTransKernel;

 }; // class clQualcommFP32Engine

 // clQualcommFP16Engine concrete class using Qualcomm GEMM example

 class clQualcommFP16Engine : public clQualcommFP32Engine{

 public:

 cl_int memLoad(typename functor::MatMulTypes<float>::out_type out){

 // Use the map function to return clBufferA pointer to the host <= blocking

 clHostPtrC = (cl_float *) clEnqueueMapBuffer(clQueue, clBufferC, CL_TRUE,

 CL_MAP_READ, 0, c_size, 0, NULL, NULL, NULL);

 // Read computed result back to host

 for(auto idx = 0 ; idx < RowC*ColC ; idx++){

 out.data()[idx] = clHostPtrC[idx];

 }

 // Release OpenCL resources

 CL_CHECK(clEnd());

 // Return if the results are loaded to memory & OpenCL resources are released

 return CL_SUCCESS;

 }

 cl_int memInit(

 typename functor::MatMulTypes<float>::in_type in0,

 typename functor::MatMulTypes<float>::in_type in1)

 {

 // FP16 is half of the size of FP32

Page ! of !43 85

 a_size = a_size >> 1;

 b_size = b_size >> 1;

 // Use zero copy to avoid memeory copy

 // Matrix A

 clBufferA = clCreateBuffer(clCtx, CL_MEM_HOST_WRITE_ONLY |
CL_MEM_ALLOC_HOST_PTR,

 a_size, NULL, NULL);

 // Use the map function to return clBufferA pointer to the host <= non-blocking

 clHostFp16PtrA = (cl_half *) clEnqueueMapBuffer(clQueue, clBufferA, CL_FALSE,

 CL_MAP_WRITE, 0, a_size, 0, NULL,

 &mapBufferEvents[0], NULL);

 // Matrix B

 clBufferB = clCreateBuffer(clCtx, CL_MEM_HOST_WRITE_ONLY |
CL_MEM_ALLOC_HOST_PTR,

 b_size, NULL, NULL);

 // Use the map function to return clBufferA pointer to the host <= non-blocking

 clHostFp16PtrB = (cl_half *) clEnqueueMapBuffer(clQueue, clBufferB, CL_FALSE,

 CL_MAP_WRITE, 0, b_size, 0, NULL,

 &mapBufferEvents[1], NULL);

 // Create GPU buffer for transposed matrices only if needed

 if(a_traspose){

 clBufferA_T = clCreateBuffer(clCtx, CL_MEM_HOST_NO_ACCESS, a_size, NULL,
NULL);

 }

 if(!b_traspose){

 clBufferB_T = clCreateBuffer(clCtx, CL_MEM_HOST_NO_ACCESS, b_size, NULL,
NULL);

 }

 // Wait for completion

 CL_CHECK(clWaitForEvents(2, mapBufferEvents));

 // Host update the buffer using pointer clHostFp16PtrA in host address space

 for(auto idx = 0 ; idx < RowA*ColA ; idx ++){

 clHostFp16PtrA[idx] = float_to_cl_half(in0.data()[idx]);

 }

 // Host update the buffer using pointer clHostFp16PtrB in host address space

 for(auto idx = 0 ; idx < RowB*ColB ; idx ++){

 clHostFp16PtrB[idx] = float_to_cl_half(in1.data()[idx]);

 }

 // Unmap the object -> Used in the OpenCL kernel

 CL_CHECK(clEnqueueUnmapMemObject(clQueue, clBufferA, (void*) clHostFp16PtrA,

 0, NULL, &unMapBufferEvents[0]));

 // Unmap the object -> Used in the OpenCL kernel

 CL_CHECK(clEnqueueUnmapMemObject(clQueue, clBufferB, (void*) clHostFp16PtrB,

 0, NULL, &unMapBufferEvents[1]));

 // Matrix C

 clBufferC = clCreateBuffer(clCtx, CL_MEM_HOST_READ_ONLY |
CL_MEM_ALLOC_HOST_PTR,

Page ! of !44 85

 c_size, NULL, NULL);

 // Wait for completion

 CL_CHECK(clWaitForEvents(2, unMapBufferEvents));

 return CL_SUCCESS;

 }

 cl_int loadFromBinaryCompute()

 {

 unsigned char* clKernelBinaryFile = NULL;

 size_t clKernelBinSize = 0;

 // Read compiled OpenCL kernel binary file from disk

 read_file(&clKernelBinaryFile, &clKernelBinSize, "matmul.bin");

 // Create an OpenCL program object from binary

 clProgram = CL_CHECK_ERR(clCreateProgramWithBinary(clCtx, 1, &clDevice,

 &clKernelBinSize,

 (const unsigned char **)&clKernelBinaryFile,

 NULL, &_err));

 // OpenCL build program

 CL_CHECK(clBuildProgram(clProgram, 1, &clDevice, NULL , NULL, NULL));

 cl_ushort gemmKernelIter;

 cl_ushort transKernelIter;

 // Create OpenCL GEMM kernel object

 // clGemmKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatMul_TN_1D_Fp16_Half4" , &_err));

 clGemmKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatMul_TN_1D_Fp16_Half8" , &_err));

 // clGemmKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatMul_TN_1D_Fp16_Half16" , &_err));

 // Create OpenCL Transpose kernel object

 // clTransKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatTrans_1D_Fp16_Half4" , &_err));

 clTransKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatTrans_1D_Fp16_Half8" , &_err));

 // clTransKernel = CL_CHECK_ERR(clCreateKernel(clProgram,
"MatTrans_1D_Fp16_Half16" , &_err));

 // Handle Matrices Transpose

 if(a_traspose && b_traspose){ // Transpose A: yes, Transpose B: yes

 transKernelIter = ColA >> 3;

 gemmKernelIter = RowA >> 3;

 // Transpose A

 SET_TRANS_KERNEL_ARG(RowA, ColA, clBufferA, clBufferA_T, transKernelIter);

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

 &RowA, NULL, 0, NULL, &transKernelEvent[0]));

Page ! of !45 85

 SET_GEMM_TN_KERNEL_ARG(ColA, RowA, RowB, clBufferA_T, clBufferB,

 clBufferC, ColA, cl_half, gemmKernelIter);

 const size_t global = ColA;

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

 &global, NULL, 1, transKernelEvent, &gemmKernelEvent));

 CL_CHECK(clWaitForEvents(1, &gemmKernelEvent));

 }else if(a_traspose && !b_traspose){ // Transpose A: yes, Transpose B: no

 transKernelIter = ColA >> 3;

 gemmKernelIter = RowA >> 3;

 // Transpose A

 SET_TRANS_KERNEL_ARG(RowA, ColA, clBufferA, clBufferA_T, transKernelIter);

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

 &RowA, NULL, 0, NULL, &transKernelEvent[0]));

 transKernelIter = ColB >> 3;

 // Transpose B

 SET_TRANS_KERNEL_ARG(RowB, ColB, clBufferB, clBufferB_T, transKernelIter);

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

 &RowB, NULL, 0, NULL, &transKernelEvent[1]));

 SET_GEMM_TN_KERNEL_ARG(ColA, RowA, ColB, clBufferA_T, clBufferB_T,

 clBufferC, RowA, cl_half, gemmKernelIter);

 const size_t global = ColA;

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

 &global, NULL, 2, transKernelEvent, &gemmKernelEvent));

 CL_CHECK(clWaitForEvents(1, &gemmKernelEvent));

 }else if(!a_traspose && b_traspose){ // Transpose A: no, Transpose B: yes

 gemmKernelIter = ColA >> 3;

 // Transpose A

 SET_GEMM_TN_KERNEL_ARG(RowA, ColA, RowB, clBufferA, clBufferB,

 clBufferC, ColA, cl_half, gemmKernelIter);

 const size_t global = RowA;

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

 &global, NULL, 0, NULL, &gemmKernelEvent));

 CL_CHECK(clWaitForEvents(1, &gemmKernelEvent));

 }else if(!a_traspose && !b_traspose){ // Transpose A: no, Transpose B: no

Page ! of !46 85

 transKernelIter = ColB >> 3;

 gemmKernelIter = ColA >> 3;

 // Transpose B

 SET_TRANS_KERNEL_ARG(ColA, ColB, clBufferB, clBufferB_T, transKernelIter);

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

 &ColA, NULL, 0, NULL, &transKernelEvent[0]));

 SET_GEMM_TN_KERNEL_ARG(RowA, ColA, ColB, clBufferA, clBufferB_T,

 clBufferC, ColA, cl_half, gemmKernelIter);

 const size_t global = RowA;

 CL_CHECK(clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

 &global, NULL, 1, transKernelEvent, &gemmKernelEvent));

 CL_CHECK(clWaitForEvents(1, &gemmKernelEvent));

 }

 return CL_SUCCESS;

 }

 private:

 // Copied memory data

 cl_half * clHostFp16PtrA;

 cl_half * clHostFp16PtrB;

 }; // class clQualcommFP16Engine

 // clBLASTEngine concrete class using CLBLAST API

 class clBLASTEngine : public clMatMulEngine<float>{

 public:

 cl_int clEnd(){

 // Free OpenCL memory objects

 CL_CHECK(clReleaseMemObject(clBufferA));

 CL_CHECK(clReleaseMemObject(clBufferB));

 CL_CHECK(clReleaseMemObject(clBufferC));

 // Free OpenCL command queue

 CL_CHECK(clReleaseCommandQueue(clQueue));

 // Free OpenCL context

 CL_CHECK(clReleaseContext(clCtx));

 // Free OpenCL events

 CL_CHECK(clReleaseEvent(gemmKernelEvent));

 CL_CHECK(clReleaseEvent(writeBufferEvents[0]));

 CL_CHECK(clReleaseEvent(writeBufferEvents[1]));

 // Return CL_SUCCESS if all resources are released successfully

 return CL_SUCCESS;

 }

Page ! of !47 85

 cl_int memLoad(typename functor::MatMulTypes<float>::out_type out){

 // Read results

 CL_CHECK(clEnqueueReadBuffer(clQueue, clBufferC, CL_TRUE, 0, c_size,

 out.data(), 0, NULL, NULL));

 // Release OpenCL resources

 CL_CHECK(clEnd());

 // Return if the results are loaded to memory & OpenCL resources are released

 return CL_SUCCESS;

 }

 cl_int memInit(

 typename functor::MatMulTypes<float>::in_type in0,

 typename functor::MatMulTypes<float>::in_type in1)

 {

 // Allocate memory buffers

 clBufferA = CL_CHECK_ERR(clCreateBuffer(clCtx, CL_MEM_READ_ONLY, a_size,

 NULL, &_err));

 clBufferB = CL_CHECK_ERR(clCreateBuffer(clCtx, CL_MEM_READ_ONLY, b_size,

 NULL, &_err));

 clBufferC = CL_CHECK_ERR(clCreateBuffer(clCtx, CL_MEM_READ_WRITE, c_size,

 NULL, &_err));

 // Enqueue write buffer commands (acynchronous write)

 CL_CHECK(clEnqueueWriteBuffer(clQueue, clBufferA, CL_FALSE, 0, a_size,

 in0.data(), 0, NULL, &writeBufferEvents[0]));

 CL_CHECK(clEnqueueWriteBuffer(clQueue, clBufferB, CL_FALSE, 0, b_size,

 in1.data(), 0, NULL, &writeBufferEvents[1]));

 // Wait for completion

 CL_CHECK(clWaitForEvents(2, writeBufferEvents));

 return CL_SUCCESS;

 }

 cl_int clBlastCompute()

 {

 // Whether Matrix A, B should be transposed

 auto MatATranspose = (a_traspose == true) ?

 CLBlastTransposeYes : CLBlastTransposeNo;

 auto MatBTranspose = (b_traspose == true) ?

 CLBlastTransposeYes : CLBlastTransposeNo;

 // Leading dimension of the input A matrix. This value must be greater than 0.

 size_t a_ld;

 // Leading dimension of the input B matrix. This value must be greater than 0.

 size_t b_ld;

 // When transpose_a == Transpose::kNo, then a_ld must be at least m,

 // otherwise a_ld must be at least k.

Page ! of !48 85

 if(MatATranspose == CLBlastTransposeYes){

 a_ld = RowA;

 }else{

 a_ld = ColA;

 }

 // When transpose_b == Transpose::kNo, then b_ld must be at least k,

 // otherwise b_ld must be at least n.

 if(MatBTranspose == CLBlastTransposeYes){

 b_ld = ColA;

 }else{

 b_ld = ColB;

 }

 // The value of c_ld must be at least m.

 const size_t c_ld = ColB;

 // Performs the matrix product C = alpha * A * B + beta * C

 const float alpha = 1.0f;

 const float beta = 0.0f;

 // Call the SGEMM routine.

 CLBlastStatusCode status = CLBlastSgemm(CLBlastLayoutRowMajor,

 MatATranspose, MatBTranspose,

 RowA, ColB, ColA,

 alpha,

 clBufferA, 0, a_ld,

 clBufferB, 0, b_ld,

 beta,

 clBufferC, 0, c_ld,

 &clQueue, &gemmKernelEvent);

 // Wait for completion

 if (status != CLBlastSuccess){

 LOG(ERROR) << "[CLBlast] Fail with code " << status;

 return CL_FALSE;

 }

 CL_CHECK(clWaitForEvents(1, &gemmKernelEvent));

 return CL_SUCCESS;

 }

 protected:

 // OpenCL memeory object

 cl_mem clBufferA;

 cl_mem clBufferB;

 cl_mem clBufferC;

 // OpenCL events

 cl_event gemmKernelEvent;

 cl_event writeBufferEvents[2];

 }; // class clBLASTEngine

Page ! of !49 85

namespace functor {

 template <typename Device, typename T>

 struct MatMulCLFunctor {

 // Computes on device "d": out = in0 * in1, where * is matrix

 // multiplication.

 void operator()(

 const Device& d, typename MatMulTypes<T>::out_type out,

 typename MatMulTypes<T>::in_type in0,

 typename MatMulTypes<T>::in_type in1,

 const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair);

 };

 // Partial specialization MatMulFunctor<Device=CPUDevice, T>.

 template <typename T>

 struct MatMulCLFunctor<CPUDevice, T> {

 void operator()(

 const CPUDevice& d, typename MatMulTypes<T>::out_type out,

 typename MatMulTypes<T>::in_type in0,

 typename MatMulTypes<T>::in_type in1,

 const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair) {

 MatMul<CPUDevice>(d, out, in0, in1, dim_pair);

 }

 };

 // Partial specialization MatMulFunctor<Device=CPUDevice, float>

 /*

 Notice that only floating pointing matrix multiplication will be handled by

 OpenCL, other datatype complutation will be handled by Eigen CPU library

 */

 template <>

 struct MatMulCLFunctor<CPUDevice, float> {

 void operator()(

 const CPUDevice& d, typename MatMulTypes<float>::out_type out,

 typename MatMulTypes<float>::in_type in0,

 typename MatMulTypes<float>::in_type in1,

 const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair)

 {

 clQualcommFP32Engine c = clQualcommFP32Engine();

 // clQualcommFP16Engine c = clQualcommFP16Engine();

 // clBLASTEngine c = clBLASTEngine();

 // OpenCL host & device side initializaiotn

 CL_CHECK(c.hostInit(in0, in1, out, dim_pair));

 // debug info

 // c.debug(true);

 // OpenCL memeory object init & memory copy

 CL_CHECK(c.memInit(in0, in1));

 // GEMM computation

Page ! of !50 85

 CL_CHECK(c.loadFromBinaryCompute());

 // CL_CHECK(c.clBlastCompute());

 // OpenCL memory load

 CL_CHECK(c.memLoad(out));

 // Results

 // c.printMatrix(in0, in1, out);

 }

 };

} // end namespace functor

} // end namespace tensorflow

#endif // MATMUL_CL_FUNCTOR_H_

B. MNIST AI model building Python script

Page ! of !51 85

Copyright 2015 The TensorFlow Authors. All Rights Reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

==
========

"""A very simple MNIST classifier.

See extensive documentation at

https://www.tensorflow.org/get_started/mnist/beginners

"""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import argparse

import sys

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

def main(_):

 # Import data

 mnist = input_data.read_data_sets(FLAGS.mnistDataDir, one_hot=True)

 # Training parameters

 maxEpochs = FLAGS.maxEpochs

 batchSize = FLAGS.batchSize

 testStep = FLAGS.testStep

 # Network parameters

 n_hidden_1 = 50 # 1st layer number of neurons

 n_hidden_2 = 50 # 2nd layer number of neurons

 n_input = 784 # MNIST data input (img shape: 28*28)

 n_classes = 10 # MNIST total classes (0-9 digits)

 # tf Graph input

 X = tf.placeholder(tf.float32, [None, n_input], name="input")

 Y = tf.placeholder(tf.float32, [None, n_classes], name="output")

 # Store layers weight & bias

 weights = {

 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),

Page ! of !52 85

 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),

 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))

 }

 biases = {

 'b1': tf.Variable(tf.random_normal([n_hidden_1])),

 'b2': tf.Variable(tf.random_normal([n_hidden_2])),

 'out': tf.Variable(tf.random_normal([n_classes]))

 }

 # Create model

 def multilayer_perceptron(x):

 # Hidden fully connected layer with `n_hidden_1` neurons

 layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])

 # Hidden fully connected layer with `n_hidden_2` neurons

 layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])

 # Output fully connected layer with a neuron for each class

 out_layer = tf.matmul(layer_2, weights['out']) + biases['out']

 return out_layer

 # Construct model

 logits = multilayer_perceptron(X)

 # Define loss

 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(

 logits=logits, labels=Y))

 # Define optimizer

 with tf.name_scope('adam_optimizer'):

 train_op = tf.train.AdamOptimizer().minimize(loss, name="train")

 # Define accuracy

 prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1))

 accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32), name="test")

 # Create a summary to monitor cross_entropy tensor

 tf.summary.scalar("loss", loss)

 # Create a summary to monitor accuracy tensor

 tf.summary.scalar("accuracy", accuracy)

 # Merge all summaries into a single op

 merged_summary_op = tf.summary.merge_all()

 # Initializing the variables

 init = tf.initialize_variables(tf.all_variables(), name='init')

 with tf.Session() as sess:

 # Session Init

 sess.run(init)

 # Logger Init

 summaryWriter = tf.summary.FileWriter(FLAGS.logDir, graph=sess.graph)

 # Training

 for step in range(maxEpochs):

 # Get MNIST training data

Page ! of !53 85

 batchImage, batchLabel = mnist.train.next_batch(batchSize)

 # Test training model for every testStep

 if step % testStep == 0:

 # Run accuracy op & summary op to get accuracy & training progress

 acc, summary = sess.run([accuracy, merged_summary_op],

 feed_dict={X: mnist.test.images, Y: mnist.test.labels})

 # Write accuracy to log file

 summaryWriter.add_summary(summary, step)

 # Print accuracy

 print('step %d, training accuracy %f' % (step, acc))

 # Run training op

 train_op.run(feed_dict={ X: batchImage, Y: batchLabel })

 # Write TF model

 tf.train.write_graph(sess.graph_def,

 './',

 'mnist_mlp.pb', as_text=False)

if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 parser.add_argument('--mnistDataDir', type=str, default='/tmp/tensorflow/mnist/input_data',

 help='MNIST data directory')

 parser.add_argument('--logDir', type=str, default='/tmp/tensorflow_logs/mlpnet',

 help='Training progress data directory')

 parser.add_argument('--batchSize', type=int, default=50,

 help='Training batch size')

 parser.add_argument('--maxEpochs', type=int, default=10000,

 help='Maximum training steps')

 parser.add_argument('--testStep', type=int, default=100,

 help='Test model accuracy for every testStep iterations')

 FLAGS, unparsed = parser.parse_known_args()

 # Program entry

 tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

Page ! of !54 85

Copyright 2015 The TensorFlow Authors. All Rights Reserved.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

==
========

"""A deep MNIST classifier using convolutional layers.

See extensive documentation at

https://www.tensorflow.org/get_started/mnist/pros

"""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import argparse

import sys

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

def deepnn(X):

 """deepnn builds the graph for a deep net for classifying digits.

 Args:

 X: an input tensor with the dimensions (N_examples, 784), where 784 is the

 number of pixels in a standard MNIST image.

 Returns:

 A tuple (y, keepProb). y is a tensor of shape (N_examples, 10), with values

 equal to the logits of classifying the digit into one of 10 classes (the

 digits 0-9). keepProb is a scalar placeholder for the probability of

 dropout.

 """

 # Reshape to use within a convolutional neural net.

 # Last dimension is for "features" - there is only one here, since images are

 # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.

 with tf.name_scope('reshape'):

 x_image = tf.reshape(X, [-1, 28, 28, 1])

 # First convolutional layer - maps one grayscale image to 32 feature maps.

 with tf.name_scope('conv1'):

 W_conv1 = weight_variable([5, 5, 1, 32])

 b_conv1 = bias_variable([32])

Page ! of !55 85

 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

 # Pooling layer - downsamples by 2X.

 with tf.name_scope('pool1'):

 h_pool1 = max_pool_2x2(h_conv1)

 # Second convolutional layer -- maps 32 feature maps to 64.

 with tf.name_scope('conv2'):

 W_conv2 = weight_variable([5, 5, 32, 64])

 b_conv2 = bias_variable([64])

 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

 # Second pooling layer.

 with tf.name_scope('pool2'):

 h_pool2 = max_pool_2x2(h_conv2)

 # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image

 # is down to 7x7x64 feature maps -- maps this to 1024 features.

 with tf.name_scope('fc1'):

 W_fc1 = weight_variable([7 * 7 * 64, 1024])

 b_fc1 = bias_variable([1024])

 h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])

 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

 # Dropout - controls the complexity of the model, prevents co-adaptation of

 # features.

 with tf.name_scope('Dropout'):

 keepProb = tf.placeholder(tf.float32)

 h_fc1_drop = tf.nn.dropout(h_fc1, keepProb)

 # Map the 1024 features to 10 classes, one for each digit

 with tf.name_scope('fc2'):

 W_fc2 = weight_variable([1024, 10])

 b_fc2 = bias_variable([10])

 Yconv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

 return Yconv, keepProb

def conv2d(X, W):

 """conv2d returns a 2d convolution layer with full stride."""

 return tf.nn.conv2d(X, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(X):

 """max_pool_2x2 downsamples a feature map by 2X."""

 return tf.nn.max_pool(X, ksize=[1, 2, 2, 1],

 strides=[1, 2, 2, 1], padding='SAME')

def weight_variable(shape):

 """weight_variable generates a weight variable of a given shape."""

 initial = tf.truncated_normal(shape, stddev=0.1)

 return tf.Variable(initial)

Page ! of !56 85

def bias_variable(shape):

 """bias_variable generates a bias variable of a given shape."""

 initial = tf.constant(0.1, shape=shape)

 return tf.Variable(initial)

def main(_):

 # Import data

 mnist = input_data.read_data_sets(FLAGS.mnistDataDir, one_hot=True)

 # Training parameters

 maxEpochs = FLAGS.maxEpochs

 batchSize = FLAGS.batchSize

 testStep = FLAGS.testStep

 # Network parameters

 n_input = 784 # MNIST data input (img shape: 28*28)

 n_classes = 10 # MNIST total classes (0-9 digits)

 # Create the model

 X = tf.placeholder(tf.float32, [None, n_input], name="input")

 Y = tf.placeholder(tf.float32, [None, n_classes], name="output")

 # Build the graph for the deep net

 Yconv, keepProb = deepnn(X)

 # Define loss

 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(

 logits=Yconv, labels=Y))

 # Define optimizer

 with tf.name_scope('adam_optimizer'):

 train_op = tf.train.AdamOptimizer().minimize(loss, name="train")

 # Define accuracy

 prediction = tf.equal(tf.argmax(Yconv, 1), tf.argmax(Y, 1))

 accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32), name="test")

 # Create a summary to monitor cross_entropy tensor

 tf.summary.scalar("loss", loss)

 # Create a summary to monitor accuracy tensor

 tf.summary.scalar("accuracy", accuracy)

 # Merge all summaries into a single op

 merged_summary_op = tf.summary.merge_all()

 # Initializing the variables

 init = tf.initialize_variables(tf.all_variables(), name='init')

 with tf.Session() as sess:

 # Session Init

 sess.run(init)

Page ! of !57 85

 # Logger Init

 summaryWriter = tf.summary.FileWriter(FLAGS.logDir, graph=sess.graph)

 # Training

 for step in range(maxEpochs):

 # Get MNIST training data

 batchImage, batchLabel = mnist.train.next_batch(batchSize)

 # Test training model for every testStep

 if step % testStep == 0:

 # Run accuracy op & summary op to get accuracy & training progress

 acc, summary = sess.run([accuracy, merged_summary_op], \

 feed_dict={ X: mnist.test.images, Y: mnist.test.labels, keepProb: 1.0})

 # Write accuracy to log file

 summaryWriter.add_summary(summary, step)

 # Print accuracy

 print('step %d, training accuracy %f' % (step, acc))

 # Run training op

 train_op.run(feed_dict={X: batchImage, Y: batchLabel, keepProb: 0.5})

 # Write TF model

 tf.train.write_graph(sess.graph_def,

 './',

 'mnist_dnn.pb', as_text=False)

if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 parser.add_argument('--mnistDataDir', type=str, default='/tmp/tensorflow/mnist/input_data',

 help='MNIST data directory')

 parser.add_argument('--logDir', type=str, default='/tmp/tensorflow_logs/deepnet',

 help='Training progress data directory')

 parser.add_argument('--batchSize', type=int, default=50,

 help='Training batch size')

 parser.add_argument('--maxEpochs', type=int, default=10000,

 help='Maximum training steps')

 parser.add_argument('--testStep', type=int, default=100,

 help='Test model accuracy for every testStep iterations')

 FLAGS, unparsed = parser.parse_known_args()

 # Program entry

 tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

C. MNIST pure trainer program source code

Page ! of !58 85

Description:
TensorFlow C++ training example for MNIST dataset

package(
 default_visibility = ["//tensorflow:internal"],
)

licenses(["notice"]) # Apache 2.0

exports_files(["LICENSE"])

load(
 "//tensorflow:tensorflow.bzl",
 "tf_copts",
)

ANDROID_C_OPTS = tf_copts() + [
 "-ffunction-sections",
 "-fdata-sections",
 "-fPIE",
 "-pie",
 "-fexceptions",
]

ANDROID_LINK_OPTS = [
 "-fPIE",
 "-pie",
 "-landroid",
 "-latomic",
 "-ldl",
 "-llog",
 "-lm",
 "-z defs",
 "-s",
 "-Wl,--gc-sections",
 "-fuse-ld=gold",
]

cc_library(
 name = "mnistReader",
 srcs = [
 "mnistReader.cc",
],
 hdrs = [
 "mnistReader.h",
],
 deps = [
 "//external:libmnist",
 "//tensorflow/core:android_tensorflow_lib",
],
)

cc_library(
 name = "tf_runner_lib",

Page ! of !59 85

 srcs = [
 "tfRunner.cc",
],
 hdrs = [
 "tfRunner.h",
],
 deps = [
 "//tensorflow/cc:cc_ops",
 "//tensorflow/core:android_tensorflow_lib",
],
)

cc_binary(
 name = "train_and_test_mnist",
 srcs = [
 "train_and_test.cc",
 "util.h",
 "tfRunner.h",
 "tfRunner.cc",
],
 copts = ANDROID_C_OPTS,
 linkopts = ANDROID_LINK_OPTS,
 deps = [
 "//tensorflow/cc:cc_ops",
 "//tensorflow/core:android_tensorflow_lib",
 ":mnistReader",
 ":tf_runner_lib",
 "//external:libTFlogger",
],
)

cc_binary(
 name = "train_mnist",
 srcs = [
 "train_mnist.cc",
 "util.h",
 "tfRunner.h",
 "tfRunner.cc",
],
 copts = ANDROID_C_OPTS,
 linkopts = ANDROID_LINK_OPTS,
 deps = [
 "//tensorflow/cc:cc_ops",
 "//tensorflow/core:android_tensorflow_lib",
 ":mnistReader",
 ":tf_runner_lib",
],
)

Page ! of !60 85

/*

By Cheng Wei on 2018/Jan/24

==
========*/

// A simple program trainging a MNIST TF model using TF C++ API

#include <vector>

#include <chrono>

#include "tensorflow/core/framework/graph.pb.h"

#include "tensorflow/core/framework/tensor.h"

#include "tensorflow/core/graph/default_device.h"

#include "tensorflow/core/graph/graph_def_builder.h"

#include "tensorflow/core/lib/core/errors.h"

#include "tensorflow/core/lib/core/stringpiece.h"

#include "tensorflow/core/lib/core/threadpool.h"

#include "tensorflow/core/lib/io/path.h"

#include "tensorflow/core/lib/strings/stringprintf.h"

#include "tensorflow/core/platform/env.h"

#include "tensorflow/core/platform/init_main.h"

#include "tensorflow/core/platform/logging.h"

#include "tensorflow/core/platform/types.h"

#include "tensorflow/core/public/session.h"

#include "tensorflow/core/util/command_line_flags.h"

#include "tfRunner.h"

#include "util.h"

#include "mnistReader.h"

// These are all common classes it's handy to reference with no namespace.

using tensorflow::Flag;

using tensorflow::Tensor;

using tensorflow::Status;

using tensorflow::string;

using tensorflow::int32;

using namespace tensorflow;

using namespace std;

int main(int argc, char* argv[]) {

 string root_dir = "/data/local/tmp/";

 string graphName = "mnist_mlp.pb";

 string mnistDir = root_dir + "MNIST_data/";

 string inputOpsName = "input";

 string outputOpsName = "output";

 string accuOpsName = "test";

 string trainOpsName = "adam_optimizer/train";

 string dropoutOpsName = "Dropout/Placeholder";

 int32 input_width = 28;

 int32 input_height = 28;

 int32 batchSize = 50;

 int32 maxSteps = 1000000;

 float iteration = 1.0f;

Page ! of !61 85

 vector<float> dropProb = { 0.5 } ;

 // Start the timer

 auto start_time = std::chrono::high_resolution_clock::now();

 vector<Flag> flag_list = {

 Flag("root_dir", &root_dir, "Binary Root Directory"),

 Flag("graphName", &graphName, "Graph To Be Executed"),

 Flag("mnistDir", &mnistDir, "MNIST Dataset Directory"),

 Flag("inputOpsName", &inputOpsName, "Input Ops Name"),

 Flag("outputOpsName", &outputOpsName, "Output Ops Name"),

 Flag("accuOpsName", &accuOpsName, "Cost Ops Name"),

 Flag("trainOpsName", &trainOpsName, "Train Ops Name"),

 Flag("dropoutOpsName",&dropoutOpsName,"Dropout Ops Name"),

 Flag("batchSize", &batchSize, "Training & Testing Batch Size"),

 Flag("maxSteps", &maxSteps, "Maximum Number of Taining Steps"),

 Flag("iteration", &iteration, "Number of Iteration to Traing the Whole Dataset"),

 Flag("dropProb", &dropProb[0], "Drop-out Layer (if any) Probability"),

 };

 string usage = Flags::Usage(argv[0], flag_list);

 const bool parse_result = Flags::Parse(&argc, argv, flag_list);

 if (!parse_result) {

 LOG(ERROR) << usage;

 return -1;

 }

 // We need to call this to set up global state for TensorFlow.

 port::InitMain(argv[0], &argc, &argv);

 if (argc > 1) {

 LOG(ERROR) << "Unknown argument " << argv[1] << "\n" << usage;

 return -1;

 }

 LOG(INFO) << "[Root directory] = " << root_dir ;

 // Prepare MNIST dataset

 LOG(INFO) << "[MNIST Dataset Directory] = " << mnistDir ;

 mnistReader mnist = mnistReader(mnistDir);

 LOG(INFO) << "[MNIST Dataset] Num of Training Images = " << mnist.getTrainingDataSize();

 LOG(INFO) << "[MNIST Dataset] Num of Training Labels = " << mnist.getTrainingDataSize();

 LOG(INFO) << "[MNIST Dataset] Num of Test Images = " << mnist.getTestingDataSize();

 LOG(INFO) << "[MNIST Dataset] Num of Test Labels = " << mnist.getTestingDataSize();

 LOG(INFO) << "[MNIST Dataset] Input Image Size = " << mnist.getImgSize();

 input_width = mnist.getImgSize();

 input_height = mnist.getImgSize();

 // Load TF model.

 unique_ptr<Session> session;

 string graph_path = io::JoinPath(root_dir, graphName);

 Status load_graph_status = LoadGraph(graph_path, &session);

Page ! of !62 85

 if (!load_graph_status.ok()) {

 LOG(ERROR) << load_graph_status;

 return -1;

 }

 LOG(INFO) << "[TF Model File Loaded From Directory] = " << graph_path ;

 tfRunner runner = tfRunner("init", trainOpsName, accuOpsName, graphName);

 runner.sessInit(session);

 runner.tensorInit(batchSize, input_width*input_height);

 for(auto beginIdx = 0 ; beginIdx < mnist.getTrainingDataSize()*iteration - batchSize;

 beginIdx = beginIdx + batchSize)

 {

 LOG(INFO) << beginIdx << " trained.";

 // If the number of training steps > maxSteps then stop training

 if (beginIdx > maxSteps){ break; }

 // image vector with dimension { 1, batchSize x input_width x input_height }

 vector<float> batchTrainImgFloatVec;

 // label vector with dimension { 1, batchSize }

 vector<float> batchTrainLabelFloatVec;

 mnist.getTrainingBatch(beginIdx, batchSize, &batchTrainImgFloatVec,
&batchTrainLabelFloatVec);

 runner.copyToTensor(batchTrainImgFloatVec, batchTrainLabelFloatVec, dropProb);

 runner.sessionTrain(session, inputOpsName, outputOpsName, dropoutOpsName);

 } // End of Training Batch Loop

 auto elapsed_time = std::chrono::high_resolution_clock::now() - start_time;

 auto time_s = std::chrono::duration<double>(elapsed_time).count();

 LOG(INFO) << "Training " << graphName << " takes " << time_s << " sec";

 vector<double> avg_accu;

 batchSize = 100;

 for(auto beginIdx = 0 ; beginIdx < mnist.getTestingDataSize() - batchSize;

 beginIdx = beginIdx + batchSize)

 { // Testing Batch Loop

 LOG(INFO) << beginIdx << " tested.";

 // image vector with dimension { 1, batchSize x input_width x input_height }

 vector<float> batchTestImgFloatVec;

 // label vector with dimension { 1, batchSize }

 vector<float> batchTestLabelFloatVec;

Page ! of !63 85

 mnist.getTestingBatch(beginIdx, batchSize, &batchTestImgFloatVec,
&batchTestLabelFloatVec);

 // No drop out layer when testing

 dropProb[0] = 1.0f;

 runner.copyToTensor(batchTestImgFloatVec, batchTestLabelFloatVec, dropProb);

 double acc = runner.sessionTest(session, inputOpsName, outputOpsName,
dropoutOpsName);

 avg_accu.push_back(acc);

 LOG(INFO) << "Accuracy " << acc * 100 << "\%";

 } // End of Testing Batch Loop

 auto acc = 100 * accumulate(avg_accu.begin(), avg_accu.end(), 0.0f) / avg_accu.size();

 LOG(INFO) << "Overall testing accuracy " << acc << "\%";

} // End of main

D. MNIST training logger program source code

Page ! of !64 85

/*

By Cheng Wei on 2018/Jan/24

==
========*/

// A simple program trainging a MNIST TF model using TF C++ API

#include <vector>

#include <chrono>

#include "tensorflow/core/framework/graph.pb.h"

#include "tensorflow/core/framework/tensor.h"

#include "tensorflow/core/graph/default_device.h"

#include "tensorflow/core/graph/graph_def_builder.h"

#include "tensorflow/core/lib/core/errors.h"

#include "tensorflow/core/lib/core/stringpiece.h"

#include "tensorflow/core/lib/core/threadpool.h"

#include "tensorflow/core/lib/io/path.h"

#include "tensorflow/core/lib/strings/stringprintf.h"

#include "tensorflow/core/platform/env.h"

#include "tensorflow/core/platform/init_main.h"

#include "tensorflow/core/platform/logging.h"

#include "tensorflow/core/platform/types.h"

#include "tensorflow/core/public/session.h"

#include "tensorflow/core/util/command_line_flags.h"

#include "tfRunner.h"

#include "util.h"

#include "mnistReader.h"

#include "tensorboard_logger.h"

// These are all common classes it's handy to reference with no namespace.

using tensorflow::Flag;

using tensorflow::Tensor;

using tensorflow::Status;

using tensorflow::string;

using tensorflow::int32;

using namespace tensorflow;

using namespace std;

int main(int argc, char* argv[]) {

 string root_dir = "/data/local/tmp/";

 string graphName = "mnist_mlp.pb";

 string mnistDir = root_dir + "MNIST_data/";

 string inputOpsName = "input";

 string outputOpsName = "output";

 string accuOpsName = "test";

 string trainOpsName = "adam_optimizer/train";

 string dropoutOpsName = "Dropout/Placeholder";

 int32 input_width = 28;

 int32 input_height = 28;

 int32 batchSize = 50;

 int32 maxSteps = 1000000;

Page ! of !65 85

 float iteration = 1.0f;

 vector<float> dropProb = { 0.5 } ;

 int timeStamp = std::chrono::duration_cast<std::chrono::milliseconds>

 (std::chrono::system_clock::now().time_since_epoch()).count();

 string logFileName = root_dir + "events.out.tfevents." + to_string(timeStamp)

 + ".wei.local";

 vector<Flag> flag_list = {

 Flag("root_dir", &root_dir, "Binary Root Directory"),

 Flag("graphName", &graphName, "Graph To Be Executed"),

 Flag("mnistDir", &mnistDir, "MNIST Dataset Directory"),

 Flag("inputOpsName", &inputOpsName, "Input Ops Name"),

 Flag("outputOpsName", &outputOpsName, "Output Ops Name"),

 Flag("accuOpsName", &accuOpsName, "Cost Ops Name"),

 Flag("trainOpsName", &trainOpsName, "Train Ops Name"),

 Flag("dropoutOpsName",&dropoutOpsName,"Dropout Ops Name"),

 Flag("batchSize", &batchSize, "Training & Testing Batch Size"),

 Flag("maxSteps", &maxSteps, "Maximum Number of Taining Steps"),

 Flag("iteration", &iteration, "Number of Iteration to Traing the Whole Dataset"),

 Flag("dropProb", &dropProb[0], "Drop-out Layer (if any) Probability"),

 };

 string usage = Flags::Usage(argv[0], flag_list);

 const bool parse_result = Flags::Parse(&argc, argv, flag_list);

 if (!parse_result) {

 LOG(ERROR) << usage;

 return -1;

 }

 // We need to call this to set up global state for TensorFlow.

 port::InitMain(argv[0], &argc, &argv);

 if (argc > 1) {

 LOG(ERROR) << "Unknown argument " << argv[1] << "\n" << usage;

 return -1;

 }

 LOG(INFO) << "[Root directory] = " << root_dir ;

 // Prepare MNIST dataset

 LOG(INFO) << "[MNIST Dataset Directory] = " << mnistDir ;

 mnistReader mnist = mnistReader(mnistDir);

 LOG(INFO) << "[MNIST Dataset] Num of Training Images = " << mnist.getTrainingDataSize();

 LOG(INFO) << "[MNIST Dataset] Num of Training Labels = " << mnist.getTrainingDataSize();

 LOG(INFO) << "[MNIST Dataset] Num of Test Images = " << mnist.getTestingDataSize();

 LOG(INFO) << "[MNIST Dataset] Num of Test Labels = " << mnist.getTestingDataSize();

 LOG(INFO) << "[MNIST Dataset] Input Image Size = " << mnist.getImgSize();

 input_width = mnist.getImgSize();

 input_height = mnist.getImgSize();

 TensorBoardLogger logger(logFileName.c_str());

Page ! of !66 85

 // Load TF model.

 unique_ptr<Session> session;

 string graph_path = io::JoinPath(root_dir, graphName);

 Status load_graph_status = LoadGraph(graph_path, &session);

 if (!load_graph_status.ok()) {

 LOG(ERROR) << load_graph_status;

 return -1;

 }

 LOG(INFO) << "[TF Model File Loaded From Directory] = " << graph_path ;

 tfRunner runner = tfRunner("init", trainOpsName, accuOpsName, graphName);

 runner.sessInit(session);

 runner.tensorInit(batchSize, input_width*input_height);

 for(auto beginIdx = 0 ; beginIdx < mnist.getTrainingDataSize()*iteration - batchSize;

 beginIdx = beginIdx + batchSize)

 {

 LOG(INFO) << beginIdx << " trained.";

 // If the number of training steps > maxSteps then stop training

 if (beginIdx > maxSteps){ break; }

 // image vector with dimension { 1, batchSize x input_width x input_height }

 vector<float> batchTrainImgFloatVec;

 // label vector with dimension { 1, batchSize }

 vector<float> batchTrainLabelFloatVec;

 mnist.getTrainingBatch(beginIdx, batchSize, &batchTrainImgFloatVec,
&batchTrainLabelFloatVec);

 runner.copyToTensor(batchTrainImgFloatVec, batchTrainLabelFloatVec, dropProb);

 runner.sessionTrain(session, inputOpsName, outputOpsName, dropoutOpsName);

 // Do overall testing for each 1000 data trained

 if(beginIdx % (5*batchSize) == 0)

 {

 vector<double> avg_accu;

 for(auto beginIdx = 0 ; beginIdx < mnist.getTestingDataSize() - batchSize;

 beginIdx = beginIdx + batchSize)

 { // Testing Batch Loop

 // LOG(INFO) << beginIdx << " tested.";

 // image vector with dimension { 1, batchSize x input_width x input_height }

 vector<float> batchTestImgFloatVec;

 // label vector with dimension { 1, batchSize }

 vector<float> batchTestLabelFloatVec;

Page ! of !67 85

 mnist.getTestingBatch(beginIdx, batchSize, &batchTestImgFloatVec,
&batchTestLabelFloatVec);

 // No drop out layer when testing

 dropProb[0] = 1.0f;

 runner.copyToTensor(batchTestImgFloatVec, batchTestLabelFloatVec, dropProb);

 double acc = runner.sessionTest(session, inputOpsName, outputOpsName,
dropoutOpsName);

 avg_accu.push_back(acc);

 // LOG(INFO) << "Accuracy " << acc * 100 << "\%";

 } // End of Testing Batch Loop

 auto acc = 100 * accumulate(avg_accu.begin(), avg_accu.end(), 0.0f) / avg_accu.size();

 LOG(INFO) << "Overall testing accuracy " << acc << "\%";

 logger.add_scalar("accurarcy", beginIdx, acc);

 }

 } // End of Training Batch Loop

} // End of main

E. OpenCL compiler source code

Page ! of !68 85

#include "CL/cl.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>

using namespace std;

///
// Attempt to create the program object from a cached binary.
///
cl_program CreateProgramFromBinary(cl_context context, cl_device_id
device, const char* fileName)
{
 FILE *fp = fopen(fileName, "rb");
 if (fp == NULL)
 {
 return NULL;
 }

 // Determine the size of the binary
 size_t binarySize;
 fseek(fp, 0, SEEK_END);
 binarySize = ftell(fp);
 rewind(fp);

 unsigned char *programBinary = new unsigned char[binarySize];
 fread(programBinary, 1, binarySize, fp);
 fclose(fp);

 cl_int errNum = 0;
 cl_program program;
 cl_int binaryStatus;

 program = clCreateProgramWithBinary(context,
 1,
 &device,
 &binarySize,
 (const unsigned
char**)&programBinary,
 &binaryStatus,
 &errNum);
 delete [] programBinary;
 if (errNum != CL_SUCCESS)
 {
 std::cerr << "Error loading program binary." << std::endl;
 return NULL;
 }

 if (binaryStatus != CL_SUCCESS)
 {
 std::cerr << "Invalid binary for device" << std::endl;
 return NULL;

Page ! of !69 85

 }

 errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
 if (errNum != CL_SUCCESS)
 {
 // Determine the reason for the error
 char buildLog[16384];
 clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
 sizeof(buildLog), buildLog, NULL);

 std::cerr << "Error in program: " << std::endl;
 std::cerr << buildLog << std::endl;
 clReleaseProgram(program);
 return NULL;
 }

 return program;
}

///
// Read in binary files
///
int read_file(char **output, size_t *size, const char *name) {
 FILE *fp = fopen(name, "rb");
 if (!fp) {
 return -1;
 }

 fseek(fp, 0, SEEK_END);
 *size = ftell(fp);
 fseek(fp, 0, SEEK_SET);

 *output = (char *)malloc(*size);
 if (!*output) {
 fclose(fp);
 return -1;
 }

 fread(*output, *size, 1, fp);
 fclose(fp);
 return 0;
}

///
// Write compiled files
///
int write_file(const char *name, const unsigned char *content,
size_t size) {
 FILE *fp = fopen(name, "wb+");
 if (!fp) {
 return -1;
 }
 fwrite(content, size, 1, fp);
 fclose(fp);

Page ! of !70 85

 return 0;
}

// OpenCL helper functions
cl_int get_platform_list(cl_platform_id **platforms_out,
 cl_uint *num_platforms_out) {
 cl_int err;

 // Read the number of platforms
 cl_uint num_platforms;
 err = clGetPlatformIDs(0, NULL, &num_platforms);
 if (err != CL_SUCCESS) {
 return err;
 }
 if (num_platforms == 0) {
 return CL_INVALID_VALUE;
 }

 // Allocate the array of cl_platform_id
 cl_platform_id *platforms =
 (cl_platform_id *)malloc(sizeof(cl_platform_id) *
num_platforms);
 if (!platforms) {
 return CL_OUT_OF_HOST_MEMORY;
 }

 // Get the result
 err = clGetPlatformIDs(num_platforms, platforms, NULL);
 if (err != CL_SUCCESS) {
 free(platforms);
 return err;
 }

 *platforms_out = platforms;
 *num_platforms_out = num_platforms;
 return CL_SUCCESS;
}

void free_platform_list(cl_platform_id *platforms, cl_uint
num_platforms) {
 free(platforms);
}

char *get_platform_info(cl_platform_id platform, cl_platform_info
param) {
 cl_int err;

 // Read the size of the buffer for platform name
 size_t buf_size;
 err = clGetPlatformInfo(platform, param, 0, NULL, &buf_size);
 if (err != CL_SUCCESS) {
 return NULL;
 }
 if (buf_size == 0) {

Page ! of !71 85

 return NULL;
 }

 // Allocate the buffer for platform name
 char *buf = (char *)malloc(buf_size);
 if (!buf) {
 return NULL;
 }

 // Read the platform name
 err = clGetPlatformInfo(platform, param, buf_size, buf, NULL);
 if (err != CL_SUCCESS) {
 free(buf);
 return NULL;
 }

 return buf;
}

cl_int get_device_list(cl_device_id **devices_out, cl_uint
*num_devices_out,
 cl_platform_id platform) {
 cl_int err;

 // Read the number of devices of the given platform
 cl_uint num_devices;
 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL,
 &num_devices);
 if (err != CL_SUCCESS) {
 return err;
 }

 // Allocate the array of cl_device_id
 cl_device_id *devices =
 (cl_device_id *)malloc(sizeof(cl_device_id) * num_devices);
 if (!devices) {
 return CL_OUT_OF_HOST_MEMORY;
 }

 // Read the result
 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices,
 devices, NULL);
 if (err != CL_SUCCESS) {
 free(devices);
 return err;
 }

 *devices_out = devices;
 *num_devices_out = num_devices;
 return CL_SUCCESS;
}

void free_device_list(cl_device_id *devices, cl_uint num_devices) {
 cl_uint i;

Page ! of !72 85

 for (i = 0; i < num_devices; ++i) {
 clReleaseDevice(devices[i]);
 }
 free(devices);
}

cl_int write_binaries(cl_program program, unsigned num_devices,
 cl_uint platform_idx, const char *
outputBinaryName) {
 unsigned i;
 cl_int err = CL_SUCCESS;
 size_t *binaries_size = NULL;
 unsigned char **binaries_ptr = NULL;

 // Read the binaries size
 size_t binaries_size_alloc_size = sizeof(size_t) * num_devices;
 binaries_size = (size_t *)malloc(binaries_size_alloc_size);
 if (!binaries_size) {
 err = CL_OUT_OF_HOST_MEMORY;
 return err;
 }

 err = clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES,
 binaries_size_alloc_size, binaries_size,
NULL);
 if (err != CL_SUCCESS) {
 return err;
 }

 // Read the binaries
 size_t binaries_ptr_alloc_size = sizeof(unsigned char *) *
num_devices;
 binaries_ptr = (unsigned char **)malloc(binaries_ptr_alloc_size);
 if (!binaries_ptr) {
 err = CL_OUT_OF_HOST_MEMORY;
 return err;
 }
 memset(binaries_ptr, 0, binaries_ptr_alloc_size);
 for (i = 0; i < num_devices; ++i) {
 binaries_ptr[i] = (unsigned char *)malloc(binaries_size[i]);
 if (!binaries_ptr[i]) {
 err = CL_OUT_OF_HOST_MEMORY;
 return err;
 }
 }

 err = clGetProgramInfo(program, CL_PROGRAM_BINARIES,
binaries_ptr_alloc_size,
 binaries_ptr, NULL);
 if (err != CL_SUCCESS) {
 return err;
 }

 // Write the binaries to file

Page ! of !73 85

 for (i = 0; i < num_devices; ++i) {
 // Write the binary to the output file
 write_file(outputBinaryName, binaries_ptr[i], binaries_size[i]);
 }

 return err;
}

cl_int compile_program(cl_uint *num_devices_out, const char *src,
 size_t src_size, cl_platform_id platform,
 cl_uint platform_idx, const char *
outputBinaryName) {
 cl_int err = CL_SUCCESS;

 // Get the device list
 cl_device_id* devices = NULL;
 cl_uint num_devices = 0;
 get_device_list(&devices, &num_devices, platform);
 *num_devices_out = num_devices;

 // Create context
 cl_context_properties ctx_properties[] = {
 CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0
 };

 cl_context ctx = clCreateContext(ctx_properties, num_devices,
devices, NULL,
 NULL, &err);
 if (err != CL_SUCCESS) {
 return err;
 }

 // Create program
 cl_program program = clCreateProgramWithSource(ctx, 1, &src,
&src_size, &err);
 if (err != CL_SUCCESS) {
 return err;
 }

 // Compile program
 err = clBuildProgram(program, num_devices, devices, NULL, NULL,
NULL);
 if (err != CL_SUCCESS)
 {
 // Determine the reason for the error
 char buildLog[16384];
 clGetProgramBuildInfo(program, devices[0],
CL_PROGRAM_BUILD_LOG,
 sizeof(buildLog), buildLog, NULL);

 std::cerr << "Error in program: " << std::endl;
 std::cerr << buildLog << std::endl;

 return err;

Page ! of !74 85

 }

 // Write the binaries
 write_binaries(program, num_devices, platform_idx,
outputBinaryName);

 return err;
}

void compile_all(const char *src, size_t src_size, const char *
outputBinaryName) {
 cl_uint i;

 // Get the platform list
 cl_platform_id *platforms = NULL;
 cl_uint num_platforms = 0;
 if (get_platform_list(&platforms, &num_platforms) != CL_SUCCESS) {
 return;
 }

 // For each platform compile binaries for each devices
 for (i = 0; i < num_platforms; ++i) {
 // Compile for each devices
 cl_uint num_devices = 0;
 cl_int err = compile_program(&num_devices, src, src_size,
platforms[i], i, outputBinaryName);

 // Print the result
 char *platform_name = get_platform_info(platforms[i],
CL_PLATFORM_NAME);
 printf("PLATFORM [%s] --> %s (%u)\n",
 (platform_name ? platform_name : ""),
 ((err == CL_SUCCESS) ? "SUCCESS" : "FAILURE"),
 (unsigned)num_devices);
 if(err){
 cerr << "[Error code]" << err << endl;
 exit(-1);
 }
 fflush(stdout);
 free(platform_name);
 }

 // Free the platform list
 free_platform_list(platforms, num_platforms);
}

int main(int argc, char **argv) {
 // Check the command line option
 if (argc < 3) {
 cerr << "USAGE: opencl-compiler [SOURCE] [OUTPUT NAME]\n";
 exit(EXIT_FAILURE);
 }

 const char * filename = argv[1];

Page ! of !75 85

 const char * output_fn = argv[2];

 // Read the source file
 char *src = NULL;
 size_t src_size = 0;
 if (read_file(&src, &src_size, filename) != 0) {
 cerr << "ERROR: Failed to read:" << filename << endl; return -1;
 }

 // Compile binaries for each platforms and devices
 compile_all(src, src_size, output_fn);

 // Free the source file
 free(src);

 // Get the platform list
 cl_int err = CL_SUCCESS;
 cl_platform_id *platforms = NULL;
 cl_uint num_platforms = 0;
 if (get_platform_list(&platforms, &num_platforms) != CL_SUCCESS) {
 cerr << "ERROR: Failed to get_platform_list" << endl; return -1;
 }

 // Get the device list from the first platform
 cl_device_id* devices = NULL;
 cl_uint num_devices = 0;
 get_device_list(&devices, &num_devices, platforms[0]);

 cl_context ctx = clCreateContext(NULL, num_devices, devices, NULL,
 NULL, &err);
 if (err != CL_SUCCESS) {
 cerr << "fail to create contenxt" << endl; return -1;
 }

 // Create a new program
 cl_program cl_progLoadedFromBinary;

 // Load the kernel binary
 cl_progLoadedFromBinary = CreateProgramFromBinary(ctx, *devices,
output_fn);
 if (!cl_progLoadedFromBinary){
 cerr << "Fail to create program" << endl; return -1;
 }else{
 cout << "Program created from binary file " << output_fn <<
endl;
 }

 return 0;
}

F. Tensorflow MatMul test — opencl-matmul source code

Page ! of !76 85

#include <sys/time.h>
#include <time.h>
#include <random>

#include "tensorflow/core/public/session.h"
#include "tensorflow/core/graph/default_device.h"

using namespace tensorflow;
using namespace std;

int main(int argc, char* argv[]) {

 if(argc != 8){
 cerr << "expected 2 arguments [rowA] [colA] [rowB] [colB]
[TransA] [TransB] [Num of Runs]" << endl;
 exit(1);
 }

 // Random generator
 std::random_device rd;
 std::default_random_engine gen =
std::default_random_engine(rd());
 std::normal_distribution<> dis{0,5};

 // Timers
 struct timeval start, end;

 string graph_definition = "matmul.pb";
 Session* session;
 GraphDef graph_def;
 SessionOptions opts;
 vector<Tensor> outputs; // Store outputs
 TF_CHECK_OK(ReadBinaryProto(Env::Default(), graph_definition,
&graph_def));

 // Set graph options
 graph::SetDefaultDevice("/cpu:0", &graph_def);

 // create a new session
 TF_CHECK_OK(NewSession(opts, &session));

 // Load graph into session
 TF_CHECK_OK(session->Create(graph_def));

 // Matrix transpose option before matrix multiplication
 int transA = atoi(argv[5]);
 int transB = atoi(argv[6]);

 // Matrix size
 int rowA = atoi(argv[1]);
 int colA = atoi(argv[2]);
 int rowB = atoi(argv[3]);
 int colB = atoi(argv[4]);
 int rowC = (transA == 1) ? colA : rowA;

Page ! of !77 85

 int colC = (transB == 1) ? rowB : colB;

 // Number of runs
 int num_runs = atoi(argv[7]);

 // Tensorflow Tensor initializaiotn
 Tensor TensorA (DT_FLOAT, TensorShape({ rowA, colA }));
 Tensor TensorB (DT_FLOAT, TensorShape({ rowB, colB }));
 float * TensorC = (float*)malloc(rowC * colC * sizeof(float));

 // Matrix initializaiotn
 auto TensorAMatrix = TensorA.tensor<float, 2>();
 for(int i = 0 ; i < rowA ; i ++){
 for(auto j = 0 ; j < colA ; j ++){
 TensorAMatrix(i, j) = dis(gen);
 }
 }
 auto TensorBMatrix = TensorB.tensor<float, 2>();
 for(int i = 0 ; i < rowB ; i ++){
 for(auto j = 0 ; j < colB ; j ++){
 TensorBMatrix(i, j) = dis(gen);
 }
 }

 LOG(INFO) << ">>> [TF] Starting " << num_runs << " TF MatMul
runs...";
 // Start timer
 gettimeofday(&start, NULL);

 for (int r=0; r<num_runs; r++) {
 // Compute matrix multiplaction result using TF
 TF_CHECK_OK(session->Run({{"x", TensorA}, {"y", TensorB}},
{"matmul"},
 {}, &outputs)); // Get cost
 }
 auto tf_res = outputs[0].matrix<float>();
 // cout << "TF result: \n" << tf_res << endl;

 // Stop timer
 gettimeofday(&end, NULL);

 double interval = (end.tv_sec * 1.0e6 + end.tv_usec) -
 (start.tv_sec * 1.0e6 + start.tv_usec);
 double runtime = interval / num_runs;
 std::cerr << ">>> Done: took " << runtime << " us per run";
 std::cout << runtime << endl;

 // Compute matrix multiplaction result using Eigen
 auto TensorAEigenMap = Eigen::Map<Eigen::Matrix<
 float, /* scalar element type */
 Eigen::Dynamic, /* num_rows is a run-time value */
 Eigen::Dynamic, /* num_cols is a run-time value */
 Eigen::RowMajor /* tensorflow::Tensor is always row-major */
>>(

Page ! of !78 85

 TensorA.flat<float>().data(), /* ptr to data */
 rowA, /* num_rows */
 colA /* num_cols */);

 auto TensorBEigenMap = Eigen::Map<Eigen::Matrix<
 float, /* scalar element type */
 Eigen::Dynamic, /* num_rows is a run-time value */
 Eigen::Dynamic, /* num_cols is a run-time value */
 Eigen::RowMajor /* tensorflow::Tensor is always row-major */
>>(
 TensorB.flat<float>().data(), /* ptr to data */
 rowB, /* num_rows */
 colB /* num_cols */);

 auto eigen_res = Eigen::Map<Eigen::Matrix<
 float, /* scalar element type */
 Eigen::Dynamic, /* num_rows is a run-time value */
 Eigen::Dynamic, /* num_cols is a run-time value */
 Eigen::RowMajor /* tensorflow::Tensor is always row-major */
>>(
 TensorC, /* ptr to data */
 rowC, /* num_rows */
 colC /* num_cols */);

 cout << ">>> [Eigen] Starting " << num_runs << " Eigen MatMul
runs...";
 // Start timer
 gettimeofday(&start, NULL);

 if(transA == 1 && transB == 1){
 eigen_res = (TensorAEigenMap.transpose() *
TensorBEigenMap.transpose());
 }else if(transA == 1 && transB == 0){
 eigen_res = (TensorAEigenMap.transpose() * TensorBEigenMap);
 }else if(transA == 0 && transB == 1){
 eigen_res = (TensorAEigenMap * TensorBEigenMap.transpose());
 }else if(transA == 0 && transB == 0){
 eigen_res = (TensorAEigenMap * TensorBEigenMap);
 }

 // cout << "Eigen result: \n" << eigen_res << endl ;

 // Stop timer
 gettimeofday(&end, NULL);
 interval = (end.tv_sec * 1.0e6 + end.tv_usec) -
 (start.tv_sec * 1.0e6 + start.tv_usec);
 runtime = interval;
 std::cout << ">>> Done: took " << runtime << " us per run";
 std::cout << runtime << endl;

 cout << "Checking results ...\n";

 double accu_err = 0;
 double signErrCount = 0;

Page ! of !79 85

 double valueErrCount = 0;
 for(auto row = 0 ; row < rowC ; row ++)
 {
 for(auto col = 0 ; col < colC ; col ++){
 float tmp = abs(tf_res(row, col) - eigen_res(row, col));
 accu_err += tmp;
 if(tf_res(row, col) * eigen_res(row, col) < 0){
 // cout << "(" << row << "," << col << ") sign err, tf_res
" << tf_res(row, col) << " eigen_res " << eigen_res(row, col) <<
endl;
 signErrCount++;
 }
 else if(tmp > 1){
 // cout << "(" << row << "," << col << ") val err, tf_res
" << tf_res(row, col) << " eigen_res " << eigen_res(row, col) <<
endl;
 valueErrCount++;
 }
 }
 }
 cout << "err per unit: " << accu_err/(rowC*colC) << ",
signErr(%) " << signErrCount/(rowC*colC) << ", valueErr(%) " <<
valueErrCount/(rowC*colC) << endl;

 free(TensorC);

 return 0;
}

G. OpenCL memory bandwidth test source code  

Page ! of !80 85

#include "CL/cl.h"
#include "Timer.h"
#include "clMemTester.h"
#include <iostream>

// clMemTester constructor
clMemTester::clMemTester(int num){
 numTests = num;
}

// Init OpenCL objects
cl_int clMemTester::init()
{
 // OpenCL error code init
 err = CL_SUCCESS;

 // Query platforms
 err = clGetPlatformIDs(1, &platform, NULL);
 if(err != CL_SUCCESS)
 return err;

 // Query devices
 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &clDevice,
NULL);
 if(err != CL_SUCCESS)
 return err;

 // Create context
 clCtx = clCreateContext(NULL, 1, &clDevice, NULL, NULL, NULL);

 // Create command clQueue
 clQueue = clCreateCommandQueue(clCtx, clDevice, 0, NULL);

 // Timer init
 Timer timer = Timer();

 return CL_SUCCESS;
}

// Release all OpenCL related resourcse
cl_int clMemTester::clEnd(){
 clReleaseCommandQueue(clQueue);
 clReleaseContext(clCtx);
 return CL_SUCCESS;
}

// Host to device memory bandwidth test
cl_int clMemTester::HostToDevice(unsigned long int numBytes)
{
 // Create host buffer
 char * hostBufPtr = new char [numBytes];
 for (auto i = 0; i < numBytes; i++)
 {
 hostBufPtr[i] = (i & 0xff);

Page ! of !81 85

 }

 // err code init
 err = CL_SUCCESS;

 // Create device buffer
 cl_mem deviceBuffer = clCreateBuffer(clCtx, CL_MEM_READ_WRITE,
numBytes, NULL, &err);
 if (err != CL_SUCCESS)
 {
 std::cerr << "clCreateBuffer fail with code " << err;
 delete [] hostBufPtr;
 return err;
 }

 clFinish(clQueue);

 timer.start();

 // Write host -> device
 for (size_t i = 0; i < numTests; i++)
 {
 // Asynchronous write
 err = clEnqueueWriteBuffer(clQueue, deviceBuffer, CL_FALSE,
0, numBytes,
 hostBufPtr, 0, NULL, NULL);
 if (err != CL_SUCCESS)
 {
 std::cerr << "Error writing device buffer";
 clReleaseMemObject(deviceBuffer);
 delete [] hostBufPtr;
 return err;
 }
 }

 // Finish any outstanding writes
 clFinish(clQueue);

 computeBandwidth(numBytes, timer.read_us());
 delete [] hostBufPtr;
 clReleaseMemObject(deviceBuffer);
 return CL_SUCCESS;
}

// Device to host memory bandwidth test
cl_int clMemTester::DeviceToHost(unsigned long int numBytes)
{
 // Create host buffer
 char * hostBufPtr = new char [numBytes];
 for (auto i = 0; i < numBytes; i++)
 {
 hostBufPtr[i] = (i & 0xff);
 }

Page ! of !82 85

 // err code init
 err = CL_SUCCESS;

 // Copy the contents of the host buffer into a device buffer
 cl_mem deviceBuffer = clCreateBuffer(clCtx,
 CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, numBytes, hostBufPtr,
&err);
 if (err != CL_SUCCESS)
 {
 std::cerr << "clCreateBuffer fail with code " << err;
 delete [] hostBufPtr;
 return err;
 }

 clFinish(clQueue);

 timer.start();

 // Read from device -> host
 for (size_t i = 0; i < numTests; i++)
 {
 // Asynchronous read
 err = clEnqueueReadBuffer(clQueue, deviceBuffer, CL_FALSE, 0,
numBytes,
 hostBufPtr, 0, NULL, NULL);
 if (err != CL_SUCCESS)
 {
 std::cerr << "Error writing device buffer";
 clReleaseMemObject(deviceBuffer);
 delete [] hostBufPtr;
 return err;
 }
 }

 // Finish any outstanding writes
 clFinish(clQueue);

 computeBandwidth(numBytes, timer.read_us());
 delete [] hostBufPtr;
 clReleaseMemObject(deviceBuffer);
 return CL_SUCCESS;
}

// Device to device memory bandwidth test
cl_int clMemTester::DeviceToDevice(unsigned long int numBytes)
{
 // Create host buffer
 char * hostBufPtr = new char [numBytes];
 for (auto i = 0; i < numBytes; i++)
 {
 hostBufPtr[i] = (i & 0xff);
 }

 // err code init

Page ! of !83 85

 err = CL_SUCCESS;

 // Copy the contents of the host buffer into a device buffer
 cl_mem deviceBufferSrc = clCreateBuffer(clCtx,
 CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, numBytes, hostBufPtr,
&err);
 if (err != CL_SUCCESS)
 {
 std::cerr << "clCreateBuffer fail with code " << err;
 clReleaseMemObject(deviceBufferSrc);
 delete [] hostBufPtr;
 return err;
 }

 // Create another device buffer to copy into
 cl_mem deviceBufferDst = clCreateBuffer(clCtx, CL_MEM_READ_WRITE,
numBytes,
 NULL, &err);
 if (err != CL_SUCCESS)
 {
 std::cerr << "clCreateBuffer fail with code " << err;
 clReleaseMemObject(deviceBufferDst);
 delete [] hostBufPtr;
 return err;
 }

 clFinish(clQueue);

 timer.start();

 // Copy from device -> device
 for (size_t i = 0; i < numTests; i++)
 {
 // Asynchronous write
 err = clEnqueueCopyBuffer(clQueue, deviceBufferSrc,
deviceBufferDst,
 0, 0, numBytes, 0, NULL, NULL);
 if (err != CL_SUCCESS)
 {
 std::cerr << "Error copying device buffer";
 clReleaseMemObject(deviceBufferSrc);
 clReleaseMemObject(deviceBufferDst);
 delete [] hostBufPtr;
 return err;
 }
 }

 // Finish any outstanding writes
 clFinish(clQueue);

 computeBandwidth(numBytes, timer.read_us());
 delete [] hostBufPtr;
 clReleaseMemObject(deviceBufferSrc);
 clReleaseMemObject(deviceBufferDst);

Page ! of !84 85

 return CL_SUCCESS;
}

// Memory bandwidth calculator
void clMemTester::computeBandwidth(size_t numOfBytes, const double&
time_us){

 double MB = numOfBytes / (1024*1024);
 printf("%.2f\n", MB * numTests * 1e6 / time_us / 1024);
}

Page ! of !85 85

	Summary
	Acknowledgement
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Background
	Project goal
	Report organization
	Project deliverables
	Project schedule
	Literature review
	Analysis of problem
	Software — Tensorflow
	Architecture
	OpenCL in Tensorflow
	Tensorflow on mobile platform
	Hardware — Mobile GPU
	Adreno GPU
	OpenCL
	Theoretical principles
	SPMD programming model
	Optimal memory access pattern
	Method of investigation
	Benchmark — LMBench
	Benchmark — MixBench
	Benchmark — OpenCL memory bandwidth test
	Preparation work
	Tensorflow porting effort
	Dataset preparation effort
	Tensorflow AI model preparation effort
	Tensorboard logger porting effort
	Benchmark porting effort
	OpenCL kernel compiler
	Equipment preparation
	Design and construction of software system
	Purpose
	Design challenges
	Architecture
	Workflow
	GPU optimization technique applied in clMatMulEngine
	Experiment results
	Experiment — CLBlast evaluation
	Untuned version
	Tuned version
	Tensorflow overhead
	Problem encountered
	Experiment — Tensorflow MatMul test
	Experiment —- OpenCL kernel optimization
	Base line performance
	Local memory
	Transpose before Multiplication
	Vectorization
	Workgroup size
	Different OpenCL memory object
	FP16 over FP32
	Miscellaneous
	Training MNIST dataset with various AI models
	AI model structure
	The design of pure training program
	The design of training logger program
	Training accuracy
	Training time
	GPU Computing capability
	Discussion of results
	Experiment — CLBlast evaluation
	Experiment —- OpenCL kernel optimization
	Training MNIST dataset with various AI models
	Limitation
	Conclusion
	Reference
	Appendix
	clMatMulEngine design source code
	MNIST AI model building Python script
	MNIST pure trainer program source code
	MNIST training logger program source code
	MNIST training logger program source code
	MNIST training logger program source code
	MNIST training logger program source code
	MNIST training logger program source code
	OpenCL compiler source code
	Tensorflow MatMul test — opencl-matmul source code
	OpenCL memory bandwidth test source code

