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Summary 
 The advancement of mobile computing technology and the recent progress in AI have driven the 
prosperity of edge computing, which means the computation used to happen in the cloud is now shifting to 
edge devices. Before the blossom of smart phones, mobile devices merely served as a communication 
medium; however, it’s so powerful and energy efficient now, it’s capable of operating intensive AI 
computation within a reasonable power budget. Yet, not all open-source AI frameworks in the market support 
AI training on mobile devices. In this report, the feasibility of training a small AI task, the MNIST 
handwritten dataset, using Tensorflow framework on mobile CPU/GPU was demonstrated. To further 
optimize the Tensorflow framework performance on mobile devices. Benchmark programs were executed on 
mobile GPU to better understand the underlying architecture. Based on the benchmark results collected, 
GPU optimization techniques were applied to conquer the system bottleneck. As a result, the matrix 
multiplication task was accelerated by 2.16x times compared to the baseline performance. 
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I. INTRODUCTION  
 The introduction section covers the project 
motivation, project background, project goal,  report 
organization, project deliverables, project schedule, 
and literature review.  

A. Motivation 
 As researchers push the boundary of AI 
(Artificial Intelligence) and the blossom of mobile 
devices, it’s foreseeable that the usage of AI might 
soon swing toward the users’ end for better user 
experience. For instance, Apple’s faceID technology 
stores biological data locally on the devices and 
performs computationally intensive AI training task 
locally to adapt to users’ facial changes. If a piece of 
facial biological data is captured on your iPhone and 
sent back to Apple server for AI analysis, phone 
users might be concerned about the privacy or 
security issue. If an AI model is trained locally on 
users’ devices, privacy will no longer be a concern. 
Therefore, in this report, the possibility of training 
and inference Tensorflow AI models on mobile 
devices with the help of mobile GPU (Graphical 
Processing Unit) will be explored. 

B. Background 
 Tensorflow is popular among both industry and 
researchers because of its generic data flow 
programming model which makes it extensible to 
handle a wide range of neural network architecture. 
Among all other open-source machine learning 
frameworks, Tensorflow is chosen because of its 
popularity among the developer community.    
 Conventionally, an AI model training process is 
more computationally intensive than the inference 
process. To accelerate both operations, it’s desirable 
to leverage the power of GPU by replacing the 
existing code with parallel computing language, 
OpenCL (Open Computing Language), which is an 
industry-backed, open-source framework for parallel 
computing across heterogeneous platforms such as 
CPU (Central Processing Unit), GPU, DSP etc. By 
training and analyzing a relatively simple but 
meaningful machine learning model on an Android 
device using mobile GPU, the possibility of edge 
computing in AI applications is demonstrated. 

C. Project goal 
 The goal of this project is to train the MNIST 
(Modified National Institute of Standards and 
Technology) dataset with Tensorflow framework on 
mobile GPU using OpenCL.    

D. Report organization 
 The report is organized in the following manner. 
The introduction section gives a brief overview of 
the overall structure. The second section, analyze of 
problem, identifies possible issues from both 
software and hardware perspectives. Next, the 
theoretical principles section introduces the GPU 
architecture and some commonly used optimization 
techniques used in GPU programming. After that, 
method of investigation section is added to elaborate 
how the problem will be analyzed by running 

various of benchmark tests. Then, the design and 
construction of software system gives details about 
the design of the abstract `clMatMulEngine` class 
and the optimization techniques applied to it. Results 
of existing or manually-designed testing programs 
are shown in the experiment results section. 
Followed by discussion section where results 
obtained are compared with the theoretical 
principles. Last but not least, the conclusion for this 
report will be listed.  

E. Project deliverables 
 The deliverable of this project will a codebase 
capable of training AI models on mobile GPU. The 
training and inference processes should be 
accelerated by the mobile GPU using OpenCL.  

F. Project schedule  
 In the first semester, a considerable amount of 
time has been spent on understanding the software 
architecture of Tensorflow, choosing suitable 
hardware platforms for experiments, and collecting 
information. In the second semester, intensive 
coding and implementation effort have been made to 
collect experimental data. 

G. Literature review  
 Accelerating AI framework on mobile devices 
has been a popular research topic. In this section, 
related acceleration frameworks will be listed.  
 RSTensorflow [1] leveraged the RenderScript 
framework to accelerate the matrix multiplication 
and convolution operations on Android devices and 
achieved 3 times speedup in Google Inception_v3 
model inference task. RenderScript is a 
programming framework designed by Google to 
support parallel computation on Android devices. In 
order to support a wide range of Android devices, 
the underlying hardware architecture is hidden from 
the programmers. On the other hand, OpenCL only 
supports Android devices with OpenCL driver; 
however, it has more control over the underlying 
hardware, which means better performance can be 
expected. Instead of RenderScript, OpenCL is 
chosen in this project because of its efficiency.  
 Qualcomm Snapdragon Neural Processing 
Engine (SNPE) is the official framework from 
Qualcomm supporting fast AI model inference on 
mobile devices using mobile GPU; however, the 
implementation isn’t open source and the training 
feature isn’t supported.  
 Tensorflow Lite [2] was released by Google  in 
Nov 2017. It accelerates Tensorflow model inference 
process on mobile CPU. In detail, pre-fused 
activation, and quantized data were added to allow 
faster machine learning inference. Plus the AI model 
file is smaller by introducing a new format called 
“Flat Buffer”, which is a new serialization library 
similar to the original one but without the need of 
parsing/unpacking the text-based representation. 

II. ANALYSIS OF PROBLEM  
A. Software — Tensorflow  

A.1.Architecture 
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 The Tensorflow software architecture is best 
illustrated in Figure 1 [3]. The top layer libraries 
such as training libraries, inference libraries, Python 
clients library, and C++ clients library all depend on 
Tensorflow C API. Behind it, the distributed master 
is designed to distribute the load across multiple 
workers, and the data flow executor is designed for 
the execution of computational graph. The kernel 
implementation libraries define all necessary 
mathematical operations needed in the Tensorflow 
library. In this project, the matrix multiplication 
operation is chosen as the optimization target 
because of its common usage in AI applications [4].  

 The core computation happens in the kernel 
implementations part, and most them depend on 
Eigen library, which is a C++ template library 
generating efficient code for GPU/CPU.  

A.2.OpenCL in Tensorflow  
 Tensorflow doesn’t support OpenCL directly, 
instead, it depends on the SYCL library, which is a 
C++ abstraction layer of OpenCL. Until the time of 
writing, there’re three SYCL implementations 
available on the market. Namely, Computecpp [5] by 
Codeplay, triSYCL [6] leaded by Xilinx, and sycl-
gtx by [7] [8]. Among all these implementations, 
only the sycl-gtx library is open-source and 
functional. In the first semester of 2017-2018, I 
found it nearly impossible to come up with a fully 
operational OpenCL implementation of SYCL. 
Therefore, instead of porting the backend of 
Tensorflow library, which is the Eigen library, to 
mobile GPU, OpenCL code was injected directly 
into the Tensorflow codebase.  

A.3.Tensorflow on mobile platform  
 Google has been focusing on mobile AI 
application and aggressively incorporating the 
Tensorflow framework into their Android system. 
Until the time of writing, TensorflowLite [2] is the 
official support for AI inference task on mobile 
CPU, and Qualcomm supported Tensorflow AI 
model inference on its DSP and GPU [9, 10].    

 To achieve the project goal, which is training 
Tensorflow AI model on mobile GPU, several 
technical difficulties were identified. First, the code 
for AI training and inference is separated in the 
framework, deep understanding of the overall 
framework structure is necessary before making any 
contribution to it. Not to mention the time spent on 
digesting the industry-level codebase contributed by 
experienced developers around the world. Secondly, 
cross compilation is needed for any application 
running on mobile devices; however, the training 
code in the framework isn’t designed for such 
purpose. The training code should be modified to 
run on mobile devices. Thirdly,  the framework only 
supports desktop Nvidia GPU via cuDNN library 
and AMD GPU via SYCL library. Two main stream 
mobile GPUs on the market, ARM Mali GPU and 
Qualcomm Adreno GPU, don’t support any of those, 
which means porting the codebase directly is 
impossible.  

B. Hardware — Mobile GPU 
 The rise of GPU in AI application was driven by 
the trend of deep learning. GPU was originally 
developed for better graphic display on desktop 
computers. Unlike CPU, GPU has more cores while 
each of them is less powerful and operates at lower 
speed. Nonetheless, packing massive amount of 
GPU cores on a chip gives great performance for 
graphics because it needs simple computation for 
each pixel and numerous pixels shall be processed 
for each frame, and several frames per second. The 
characteristics of  GPU makes it naturally suitable 
for neural network AI task because of its highly 
parallelizable nature.  
 Similar to the trend in desktop GPU market, 
performance of mobile GPU dramatically increases 
as mobile gaming gains momentum. Yet, there’re 
still differences between the two. The computational 
power of mobile GPUs and desktop GPUs are at 
different level. Mobile GPUs are restricted by TDP 
(Thermal Design Power) since most mobile GPUs 
are packed with CPU into a SoC (System On Chip), 
and they have to share the TDP quota. Moreover, 
mobile GPUs have to share the last level memory 
with CPU [11] while desktop GPUs come with a 
piece of dedicated memory on chip separated from 
CPU.  
 There are two mainstream mobile GPUs in the 
market that support OpenCL: ARM Mali and 
Qualcomm Adreno. Until the date of writing, the 
latest ARM Mali GPU supports supports OpenCL 
1.2 with full profile functionality [12], and the latest 
Qualcomm Adreno GPU supports OpenCL 2.0 with 
full profile functionality [11]. In this project, 
Qualcomm Adreno 540/530 GPUs were used 
because the company has better vendor support and 
better GPU profiling tools.  
 In general, in order to run a simple OpenCL 
program on mobile GPU, we need the following 
items. A cross compilation toolchain (in our case the 
Android NDK toolchain) to cross compile the binary 
code for Android device, and a list of OpenCL 
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headers (available on Khronos website), and a 
vendor specific OpenCL driver shipped with the 
phone [11].  
 Qualcomm Snapdragon profiler [13] is the 
official desktop profiling tool for CPU/GPU/DSP on 
Qualcomm chips. I can analyze the overall system 
level performance by observing the GPU load, GPU 
L1 cache miss rate, GPU L2 cache miss rate, 
OpenCL kernel enqueue time, kernel execution time, 
memory copy time, kernel instructions, distribution 
of kernel assembly code (e.g. percentage of NOP 
instruction in the OpenCL kernel code) etc.   

C. Adreno GPU  
 Adreno GPU is chosen in this project, thus, 
more specific details will be covered in this section. 
Due to the fact that the technical implementation is 
proprietary, the architecture detail included in this 
section is merely a concise version of the content in 
the programming guide [11].  
 The illustrative architecture is shown on Figure 
2. There’re a shade processor (SP) and a texture 
processor (TP) in the system. Memory traffic 
generated by either processor has to go through L2 
cache to the system memory. However, an OpenCL 
image object and a buffer object are treated 
differently in such design. Additional L1 cache is 
located in the texture processor and it’s only 
accessible by an OpenCL image read operation.  

D. OpenCL  
 OpenCL is the industry driven SPMD (Single 
Program Multiple Data) programming model for 
GPU [14]. Unlike other mobile GPU programming 
framework such as RenderScript used in 
RSTensorflow [1], OpenCL exposed the underlying 
hardware to the developers which is more flexible 
and extensible.  
 The OpenCL framework is separated into 
following parts: platform model, execution model, 
memory model, and programming model. The 
platform model defines the high-level heterogeneous 
system. The execution model abstracts how SPMD 
commands are executed on the platform. The 
memory model defines different levels of memory in 

the heterogeneous system. The programming model 
defines a high level idea when designing an 
algorithm.   
 For the platform model, a host device is 
connected to one or more OpenCL devices. For 
instance, on mobile platform, the host is the CPU, 
the OpenCL device is the mobile GPU. An OpenCL 
device is divided into smaller parts called compute 
units (CUs), which are further divided into 
processing elements (PEs). The reason of defining 
such concept is for the easiness of explanation in the 
OpenCL execution model.  
  In the execution model, an OpenCL application 
can be separated into two parts, namely host-side 
code and kernel code. The host-side code is run on 
host device and the kernel code is executed on 
OpenCL devices. A host can submit a kernel for 
execution on OpenCL devices. At the same time an 
integer index space is created for kernel execution. 
An instance of kernel is defined as a work-item and 
identified by its global id. Furthermore, work-items 
are grouped into a work-group which is an abstract 
concept of bundled execution.  
 In the memory model, OpenCL defines two 
types of data storage: buffer objects and image 
objects. Buffer object is a block of adjacent memory 
just like an array. Image object is more complicated 
because of various image formats supported, and the 

implementation is vendor specific. Normally, a 
buffer object is easier to use but the kernel developer 
has to be very careful with the boundary cases. As 
for image object, it’s easier to conceptualize when 
dealing with image processing kernel because it’s 
2D naturally. For the memory region, OpenCL 
defines five different memory regions, namely 
global memory, constant memory, local memory, 
private memory. In detail, global memory is 
accessible for all work-items in a work-group. 
Constant memory is a piece of memory defined as 
constant in global memory. Local memory is 
accessible for all work-items in a workgroup. Notice 
that the implementation of local memory is vendor 
specific, a local memory can be added next to an 
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OpenCL device or mapped to a section of global 
memory. Private memory is private to each work-
item and invisible to others.   
 The programming model abstracts the high level 
algorithmic design concept. For instance, a 
developer can come up with a data-parallel 
algorithm given the problem itself is parallizable. On 
the other hand, a task-parallel programming model is 
achieved when kernels are submitted for an out-of-
order queue for execution. The dependencies 
between the kernels are resolved by the runtime 
scheduling. The limitation of such programming 
model is the nature of the problem. For instance, 
given a naturally sequential problem, it’s impossible 
to make it task-parallel.   

III. THEORETICAL PRINCIPLES  
A. SPMD programming model    

 GPU is faster in some applications because of 
the parallel programming model. In OpenCL it’s 
called SPMD, which means a group of work-items 
are executing the same instruction in a lock step with 
each other. Therefore, despite the fact that OpenCL 
compute units are slower than normal CPU cores, 
the concept of latency hiding enables GPU to 
achieve high throughput. By the time a GPU core is 
waiting for a memory access to the memory system, 
it’s able to switch to another thread and executes a 
few more ALU instructions there until it encounters 
another memory instruction. As the memory system 
returns the requested data to the GPU core, it 
quickly switches back to the first thread and moves 
on to the next instruction. In that case, a GPU be 
kept busy all the time and the latency can be hidden. 
Nonetheless, it’s possible for a GPU core to suffer 
from low throughput because the kernel itself is 
memory bounded or the memory access pattern isn’t 
well supported by the underlying memory system. 

B. Optimal memory access pattern     
 There’re some optimal memory access patterns 
in GPU programming which best fit the underlying 
memory system. First, coalesced memory access 
refer to the capability of combining load/store 
request from neighboring work-items. The Adreno 
5xx series GPU supports coalesced load/store to 
local memory and coalesced load to global memory 
[1]. Secondly, vectorization refers to accessing 
memory in a vectorized way for a single work-item 
to better utilize the memory bandwidth. The best 
vectorization parameter is device dependent. 
Experiments profiling the best vectorization ratio on 
Adreno 540 GPU will be shown in the later part of 
this report. Thirdly, it’s a good practice to load or 
store a chunk of bytes from the memory, and load/
store memory address should be 32 bites aligned [1]. 
Fourthly, local memory is shared with all work items 
within the same work-group. A kernel is faster with 
local memory because the access time is lower than 
global memory.   

IV. METHOD OF INVESTIGATION  

 In order to apply the optimization technique to 
the system. Deep understand of the underly 
hardware is needed despite the fact that most mobile 
GPU architectures are proprietary and close source. 
By executing existing or self-designed benchmark 
programs on the mobile platform, information 
crucial for optimization can be revealed.     

A.  Benchmark — LMBench 
 LMBench [4] is a popular memory benchmark 
program testing the memory access latency of CPU. 
This benchmark is necessary because of the 
hardware architecture of mobile GPU. Unlike 
traditional desktop GPU with on-chip memory 
separated from the system RAM, mobile GPU has to 
share the last level memory with CPU. Therefore, by 
understanding the memory access latency of the 
system RAM, one could have a rough picture of 
memory latency in GPU. Which is a critical 
parameter when it comes to the optimization of GPU 
kernels. 
 The original software was written for UNIX 
system. It’s cross-compiled to Android platform with 
Android NDK version 16 toolchain. The experiment 
was conducted on both Snapdragon 835 and 
Snapdragon 820 SoC, results are shown on Figure 3 
and Figure 4 respectively.  
 From Figure 3 and Figure 4, the CPU L1 cache 
access time for S835 is ~1.2 ns, and S820 is ~1.4 ns. 
L2 cache access time for S835 is ~11 ns, and S820 is 
~10 ns. The system RAM access time for S835 is 
~145 ns, and S820 is ~170 ns. Due to the fact that 
the OpenCL global memory on mobile GPU is the 
system RAM. Conclusion can be made that the 
global memory in OpenCL memory model on 
mobile GPU has access time equals to ~170 ns and 
~145 ns for S820 and S835 respectively.   

B. Benchmark — MixBench 
 MixBench [16] is an OpenCL benchmark testing 
the relationship between three factors ( throughput, 
memory bandwidth, operation intensity ) on a GPU. 
As the operation intensity grows, the kernel moves 
from a memory bound kernel to a compute bound 
kernel. By profiling these factors, one can use these 
parameters to design a more efficient GPU kernel.   
 This experiment was conducted on both 
Snapdragon 835 SoC with Adreno 540 GPU and 
Snapdragon 820 SoC with Adreno 530 GPU. Integer 
operation, single precision floating point operation 
(FP32), and half precision floating point operation 
(FP16) were tested on both platforms.  
 The Adreno 540 performance of FP32 is shown 
in Figure 5, FP16 performance on Figure 6, Integer 
operation performance on Figure 7. The Adreno 530 
performance of FP32 is shown in Figure 8, FP16 
performance on Figure 9, Integer operation 
performance on Figure 10. As the operation intensity 
increases, the kernel is switching from a memory 
bound kernel to a compute bound kernel. From 
Figure 5 to 10, there’s a discontinuous point (marked 
by red arrow) in each Figure, which represents a 
burst in both computation and memory throughput. 
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This is the sweet region for a GPU kernel to yield 
maximum hardware utilization by latency hiding.  

C. Benchmark — OpenCL memory bandwidth 
test 

 Inspired by the bandwidth tests in Qualcomm 
Adreno SDK, this benchmark was built from scratch 
to measure the memory transfer bandwidth between 
the host device and OpenCL devices. Data 
consumed by an OpenCL kernel should be first 
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Figure 4. is the memory random access latency for Snapdragon 820 platform. X-axis is the memory 
load size in byte. Y-axis is the memory random access time in microsecond (us). Multiple data points 
on the right show the stride size for random memory access. Stride sizes from 16 bytes to 1024 bytes 
were performed in this experiment.
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Figure 3. is the memory random access latency for Snapdragon 835 platform. X-axis is the memory 
load size in byte. Y-axis is the memory random access time in microsecond (us). Multiple data points 
on the right show the stride size for random memory access. Stride sizes from 16 bytes to 1024 bytes 
were performed in this experiment.
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loaded into the GPU memory by the 
`clEnqueueWriteBuffer` function in the OpenCL 
programming model. Similarly, results computed by 
a kernel should be read back to host using the 
`clEnqueueReadBuffer` function. The data transfer 
time between GPU and CPU consists of a large 
portion of computational time. Thus, understanding 
such performance is important for optimization. 
Memory bandwidth was measured in the following 
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Figure 8. The performance of single precision 
floating point operation on Adreno 530 GPU.

Figure 9. The performance of half precision floating 
point operation on Adreno 530 GPU.
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Adreno 530 (Integer Operation)
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Figure 10. The performance of integer point 
operation on Adreno 530 GPU.
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Figure 5. The performance of single precision floating 
point operation on Adreno 540 GPU. X-axis is the 
memory bandwidth in GB/s. The Y-axis is the throughput 
(GFLOPS). The diameter of the data point is the kernel 
operation intensity in FLOP/Byte. The number right next 
to the data point is the operation intensity.

Figure 6. The performance of half precision floating 
point operation on Adreno 540 GPU. X-axis is the 
memory bandwidth in GB/s. The Y-axis is the throughput 
(GFLOPS). The diameter of the data point is the kernel 
operation intensity in FLOP/Byte. The number right next 
to the data point is the operation intensity.
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Adreno 540 (Integer Operation)
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Figure 7. The performance of integer operation on 
Adreno 540 GPU. X-axis is the memory bandwidth in 
GB/s. The Y-axis is the throughput (GIOPS). The 
diameter of the data point is the kernel operation 
intensity in IOP/Byte. The number right next to the data 
point is the operation intensity.



scenarios. Data transfer from host to OpenCL 
devices, from OpenCL devices to host, and from an 
OpenCL device to another OpenCL device.  
 Unlike the traditional desktop GPUs, the global 
memory on mobile GPU is shared with system 
RAM. As a result, the obtained results should be the 
transfer bandwidth within the system RAM. 
Moreover, the OpenCL buffer memory and image 
memory are handled differently on Adreno GPU [1]. 
In this experiment, only OpenCL buffer memory 
object was tested. Results of Adreno 540 GPU are 
shown in Figure 11, and results of Adreno 530 GPU 
are shown in Figure 12. Notice the difference 
between Figure 11 and Figure 12, both Adreno 540 
and Adreno 530 devices have similar host-to-device 
and device-to-host memory transfer bandwidth. 
Expectedly, the device-to-device bandwidth on 
Adreno 540 GPU is half of those between host and 
device because the data should be read and sent back 
to OpenCL devices, the channel is shared so half of 
the bandwidth is reasonable. Unexpectedly, the 
device-to-device memory transfer bandwidth on 
Adreno 530 GPU is 2 to 3 times faster than host-to-
device bandwidth. The source code can be found in 
Appendix G: OpenCL memory bandwidth test source 
code.     

V. PREPARATION WORK 

 Mentioned in the analyze of problem section, 
many technical barriers need to be overcome before 
any optimization techniques are applied. In this 
section, all preparation work will be covered.  

A. Tensorflow porting effort 
 The most challenging part of porting Tensorflow 
training functionality to Android phone is to identify 
the problematic segments and modify the codebase 
with minimum code injection. Unlike conventional 
machine learning framework (i.e. Caffe) that 
depends on traditional GNU Make system, the 
Tensorflow framework relies on the Bazel software 
building tool developed by Google. In such system, 
a library or a binary are regulated by a BUILD file 
which is similar to the Makefile in GNU Make.  
 One of the several technical difficulties 
encountered during the development is the 
compilation of `//tensorflow/
core:android_tensorflow_lib` target in the 
framework. The target itself contains most of the 
libraries needed for training an AI model. Several 
C++ versions have been tested to cross compile the 
existing codebase. Limited C++ support from 
Android NDK toolchain adds complexity to the 
development. For instance, the `std::to_string()` 
function hasn’t been added to the NDK toolchain 
revision 15c, a temporary C++ template patch was 
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Figure 11. This chart shows the memory transfer bandwidth between host device and OpenCL device on 
Adreno 540 GPU. X-axis is the memory size being transferred in Mbyte. Y-axis is the measured bandwidth 
in GB/s.  
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Figure 12. This chart shows the memory transfer bandwidth between host device and OpenCL device on 
Adreno 530 GPU. X-axis is the memory size being transferred in Mbyte. Y-axis is the measured bandwidth 
in GB/s.  
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created for this specific function to pass the 
compiling process.   
 Another technical difficulty encountered is the 
denial of execution on Android phone. For Android 
version greater than 5.0, PIE (Position Independent 
Execution) is enforced to ensure the security. 
Program compiled without `-fPIE -pie` linker flags 
won’t be allowed to executed on Android version 
newer than 5.0.    
 `-lpthread` is commonly used compiler flag for 
UNIX-like platform if the code shall be linked with 
the pthread library. Out of expectation, it is included 
in the Android NDK toolchain automatically and 
adding such flag will cause a linking error. Manual 
removal was carefully performed to ensure the 
configuration is correct for both the cross-compiled 
Android platform and the original desktop platform.  
 LMDB (Lightning Memory-Mapped Database) 
is a library that Tensorflow training codebase 
depends on. The cross compilation of such library 
requires an additional compiler flag `-DANDROID` 
and the removal of `-lpthread` linker flag.  

B. Dataset preparation effort 
 MNIST handwritten digits dataset consists of 
60000 training samples and 10000 testing samples. 
Each sample is a grey scale image of size 28*28. 
With wichtounet’s [17] kind contribution to the 
open-source community, the work of parsing 
MNIST dataset and incorporating it into the mobile 
GPU training program is reduced dramatically.  

C. Tensorflow AI model preparation effort  
 Tensorflow AI model is built by its Python API 
to reduce the programming complexity. A 
Tensorflow model file is a machine-readable 
protocol buffer file (.pb) which defines the 
computational graph of certain AI algorithm. The 
file was sent to Android devices and read by 
Tensorflow runtime to rebuild the computational 
graph structure on mobile devices.  
 In this project, two AI models will be presented, 
MLP (Multi-Layer Perceptron) and DNN (Deep 
Neural Network) respectively. The architectural 
design and hyper-parameters of such AI model is out 
of scope of this project, only the content will be 
covered. The first model, MLP (), consists of 1 input 
layer of size [batch_size, 784], 1 output layer of size 
[batch size, 10], 2 hidden layers, each with 50 
neurons. The second model, DNN, consists of 2 
convolutional layers (32 5x5 filers for the first and 
64 5x5 filters for the second), 2 pooling layers (2x2 
filter with stride 2 for both), 2 fully connected 
layers, 1 drop-out layer.   
 Since the system bottleneck and optimization 
target of this project are matrix multiplication, only 
the number of such operation is analyzed. For both 
DNN and MLP, the number of matrix multiplication 
operation is shown in Table 1. The Python script 
used to generate the models can be found in 
Appendix B: MNIST AI model building Python 
script. 
  

D. Tensorboard logger porting effort  
 Tensorboard is a Tensorflow application 
debugging tool developed by Google. It’s only 
available on desktop platform using Tensorflow 
Python API. The debugging tool is essential for AI 
training processes and worth porting to Android 
platform. Inspired by tensorboard_logger project on 
GitHub [18], the MINST training program is capable 
of generating Tensorboard compatible log files with 
slight modification. Consequently, the training 
accuracy of an AI model on mobile devices was 
visualized using the powerful Tensorboard 
debugging tool.  

E. Benchmark porting effort 
 For the thorough understand of the SoC 
performance, benchmark programs for both memory 
system and GPU were executed. For memory system 
benchmark, as suggested by my supervisor, the 
classical LMBench [15] was ported to Android 
platform. For GPU benchmark, the MixBench [16] 
was ported to mobile GPU.  
 The LMBench was originally designed for a 
UNIX-like system, and luckily, most of the tests 
could be ported to Android platform except some 
network related benchmarks. MixBench is a GPU 
benchmark tool testing mixed operational intensity 
kernels. Porting it was less troublesome because of 
well-supported cross compilation setup. 

F. OpenCL kernel compiler  
 Offline kernel compilation is one of the OpenCL 
optimization technique applied in the later section. 
There’re two ways to create an OpenCL program 
object: online compilation and offline compilation. 
Online compilation creates an OpenCL program 
object by calling `clCreateProgramWithSource`, and 
the offline compilation creates an object by calling 
`clCreateProgramWithBinary`. To support offline 
compilation, this OpenCL kernel compiler is 
designed from scratch. First, the compiler creates an 
object by reading the OpenCL kernel source code in 
bytes. The created OpenCL program object is then 
queried by the `clGetProgramInfo` function with 
`CL_PROGRAM_BINARY_SIZES` flag. The right 
amount of memory will be allocated based on the 
value returned. Next, read the program binary  size 
using the `CL_PROGRAM_BINARIES` flag, and  
eventually, write it to a file in binary format. The 
source code can be found in Appendix E: OpenCL 
compiler source code.    

G. Equipment preparation  

Table 1: MatMul operation analysis

Model 
Name MatMul Operation

MLP [batchSize, 784] * [784, 50] * [50, 50] * 
[50, 10]

DNN [batchSize, 3136] * [3136, 1024] * [1024, 
10]
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 In this project, the benchmark tests were 
conducted on multiple devices including Xiaomi 6 
Android phone, Open-Q Snapdragon 820 
development kit. Some trivial equipment preparation 
work is needed, including flashing the Android 
ROM, getting root access on Android platform etc.  
 Also, suggested by the Qualcomm programming 
guide [11], the power limitation on both mobile 
GPU and CPU can be lifted once entered the 
performance mode. To achieve the maximum 
performance, all experiments conducted on mobile 
platform are performed under such setup.    

VI.  DESIGN AND CONSTRUCTION OF 
SOFTWARE SYSTEM  
A. Purpose  

 Due to the reason mentioned in the introduction 
section, only Nvidia and AMD GPU are supported in 
the Tensorflow framework. For the purpose of 
accelerating it on mobile GPU, OpenCL code was 
embedded into the Tensorflow MatMul kernel to by-
pass the original program execution routine and 
routed it to the OpenCL-accelerated version. 
Originally, the computation workload was handled 
by Eigen library, which is a cutting-edge C++ linear 
algebra library. 
 The matrix multiplication operation was 
identified as system bottleneck in most AI training 
or inference tasks [4]. Thus, a dedicated class called 
` clMatMulEngine` was designed to handled the 
floating point (FP32) matrix multiplication and off-
load the computation from mobile CPU to mobile 
GPU via OpenCL code. 

B. Design challenges 
 Perhaps the most demanding part of the code 
injection challenge is understanding the Tensorflow 
core codebase due to the lack of internal 
documentation revealed by Google and all the high-
level C++ template representation. Converting 
matrices data from the `Eigen::Tensor` to OpenCL 
style `cl_mem` object required some understandings 
of both framework.  
 Moreover, the matrix multiplications is 
originally handled by a single line of code 
`out.device(d) = in0.contract(in1, dim_pair);`, 
which hides lots of implementation details. For 
instance, the object called `dim_pair` contains the 
info for whether two matrices should be transposed 
before the actual multiplication. Shortage of such 
implementation details left the development process 
struggling. In normal computation, matrices won’t 
be transposed and the bug is invisible. During the AI 
model training process, matrices will be transposed 
if multiple multiplication operations are performed 
sequentially. As a result, two weeks were spent on 
the identification of this problem because the un-
transposed computed results lead to problematic 
gradient calculation and a silent failure on training 
task.  

C. Architecture  

 As the complexity of this project grows, 
experiments with higher code complexity have to be 
supported by the original design of  
`clMatMulEngine`. Experimenting with new 
OpenCL optimization technique sometimes requires 
modification in host-side code. For instance, 
applying new OpenCL memory optimization 
techniques often introduces additional OpenCL 
event objects to handle the program synchronization 
or a new memory flag for OpenCL memory object. 
With object oriented programming (OOP) in mind, 
the software architecture is defined as follow.  
 The original `clMatMulEngine` C++ class 
became the parent class of all child subclasses. It 
handles all common OpenCL operations such as 
host-side OpenCL initialization, common debugging 
functions etc. Common member variables in were 
included such as the size of matrices, OpenCL 
context object, OpenCL device object, OpenCL 
command queue object. Moreover, Virtual C++ 
functions were added to define the behavior of 
inherited classes. For instance, a subclass inherited 
from `clMatMulEngine` should implement a 
`clEnd()` function which releases all OpenCL related 
objects used in the operation and returns 
`CL_SUCCESS` if all functions completed as 
expected. A `memLoad()` function which copies the 
computed results from an OpenCL memory object to 
a Tensorflow defined `Eigen::TensorMap`. A 
`memInit()` method that reads in two 
`Eigen::TensorMap` objects (two matrices) and 
replicates the results to OpenCL memory objects.   
 `binaryLoaderInterface` was created for loading 
compiled OpenCL kernel dynamically, which 
increased the performance because the compilation 
process is time-consuming. This interface defined a 
virtual method `loadFromBinaryCompute()` which 
loads the compiled OpenCL kernel binary into an 
OpenCL program object and perform the 
computation. The implementation detail of a virtual 
function is defined in the inherited classes.  
 Three child classes of `clMatMulEngine` are as 
follow. A `clQualcommFP32Engine` class inherits 
from `clMatMulEngine` class and 
`binaryLoaderInterface` class, it’s designed to 
handle floating point 32 bits matrix multiplication on 
Qualcomm Adreno GPU and loads the compiled 
OpenCL kernel binary at runtime. 
`clQualcommFP16Engine` was created with similar 
functionality compared to 
`clQualcommFP32Engine`. The difference lies in 
the memory copying operation because the floating 
point of 16 bits is half of the size of 32 bits. Also, 
different kernel functions are called. 
`clBLASTEngine` is a child class of 
`clMatMulEngine`. The reason for creating such 
class is to investigate the performance of the 
CLBlast open source OpenCL BLAS (Basic Linear 
Algebra Subprogram) library. The source code for 
`clMatMulEngine` can be found in Appendix A: 
clMatMulEngine design source code.   

D. Workflow 
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 The workflow of `clMatMulEngine` is no 
different from other OpenCL applications. It 
involves the following operations, host-side code 
initialization, memory copy to OpenCL devices, 
submit OpenCL kernel, memory copy from OpenCL 
devices back to host, release OpenCL objects. In the 
scope of the `clMatMulEngine` design, `hostInit()` 
function does the host-side initialization, `memInit()` 
handles memory copy to OpenCL devices, 
`loadFromBinaryCompute()` submits OpenCL 
kernels, `memLoad()` copies results back to the host, 
`clEnd()` releases OpenCL objects. The 
implementation details are included in the appendix.    

E. GPU optimization technique applied in  
clMatMulEngine 

 OpenCL adheres to a relaxed memory model, 
some parts of the memory consistency issues are 
implementation specific and the details are left to 
device vendor. For Adreno mobile GPU, some 
optimization techniques are discussed in the official 
Qualcomm OpenCL programming guide [11] that 
are specific to Adreno GPU. Adequate techniques 
are applied in the design of `clMatMulEngine` and 
will be discussed in this section. The discussion will 
be separated into two parts, memory optimization 
and binary kernel optimization respectively.  
 Memory optimization technique is important on 
mobile devices because of several limitations on 
mobile platforms. There’re limited system RAM on 
mobile devices and training AI applications is ofter 
memory consuming because it usually happens in 
batch. Loading a batch of data into the training 
program is more efficient and is a widely applied 
method. In this project, out of memory situation was 
observed when dealing with large batch size. 
Discovered from the resource monitor, the training 
application filled up the memory and resulted in a 
system freeze. In details, memory copy is required in 
an OpenCL application to copy the existing data 
from host to an OpenCL device; however, the 
mobile GPU shares the last level memory with CPU, 
which makes the operation unnecessary because the 
original and the copied memory all sit in the system 
RAM. During the training process, an OpenCL 
accelerated Tensroflow MatMul functor will make a 
copy of the existing Tensorflow allocated data and 
consumed twice the size of a normal batch.  
 The solution to the problem mentioned above is 
the zero copy method mentioned in the 
programming guide [11]. An OpenCL memory 
object can be created without introducing 
unnecessary copy if the flag 
`CL_MEM_ALLOC_HOST_PTR` is used plus the 
usage of OpenCL memory map function instead of 
memory copy one. The `clMatMulEngine` is free 
from out of memory problem with this memory 
optimization technique applied.  
 The binary kernel optimization technique is 
important because an OpenCL object is created in 
the Tensorflow framework for each MatMul 
operation. ( It’s not the best practice of doing so and 
will be discussed in the limitation section. ) For each 

MatMul operation, the kernel code should be 
compiled in order to create an OpenCL kernel 
object. Discovered from the Snapdragon profiler, the 
compilation time for OpenCL kernel is time 
consuming and slow down the performance 
dramatically because there’re plenty of MatMul 
operations in an AI application. With this 
observation in mind, a simple OpenCL device 
compiler was created to support offline compilation, 
which pre-compiles the kernel and load the compiled 
binary at runtime. The 
`clCreateProgramWithSource` function was replaced 
with `clCreateProgramWithBinary` to create an 
OpenCL program object in the `clMatMulEngine`. 

VII.EXPERIMENT RESULTS  
A. Experiment — CLBlast evaluation  

 The CLBlast library is an open source OpenCL 
BLAS library [19]. It’s designed to leverage the 
performance of various kinds of OpenCL devices 
ranging from desktop GPUs to mobile GPUs. The 
library consists of two parts, the BLAS library which 
provides basic library algebra operations, and a tuner 
that runs automated tests on an OpenCL devices and 
generates the a combination of parameters that gives 
the best performance. In  
this experiment, only the GEMM (GEneral Matrix-
to-matrix Multiplication) functionality of the BLAS 
library was tested.     

A.1. Untuned version  
 Notice that a database is embedded in the library 
to select the appropriate set of parameters for the 
BLAS OpenCL kernel at runtime. It first identifies 
the device name and the device vendor by the 
OpenCL `clGetDeviceInfo` function and uses the 
retuned value to select a set of parameters for that 
device. The default set of parameters for Adreno 
GPU is tuned for Adreno 330. The performance of 
the untuned version is shown in Figure 13.  

A.2.Tuned version  
 As instructed by the CLBlast manual, tuning the 
performance for a new OpenCL device is needed to 
find the best set of parameters for the OpenCL 
kernel. An ideal set of parameters for Adreno 540 
was obtained by running the tuner manually on the 
devices and the best set of parameters were added to 
the database. The matrix multiplication result of the 
tuned version CLBlast is shown in Figure 14.  

A.3.Tensorflow overhead  
 To understand the overhead introduced by 
Tensorflow, the computational time was measured 
by incorporating it into the Tensorflow framework 
versus running it as a normal OpenCL program. The 
results are shown in Figure 15. 

A.4.Problem encountered  
 Mentioned in the previous section, a class 
`clBLASTEngine` was created to incorporate the 
library itself into the Tensorflow framework. 
Introducing a new library into the Tensorlfow 
framework is complicated by the usage of Bazel 
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Figure 13. The FP32 square matrix multiplication performance between CPU Eigen library and untuned 
CLBlast library. Different colors show matrices of different size. Y-axis is the time needed in microsecond 
(us).  
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Figure 14. The FP32 square matrix multiplication performance between CPU Eigen library and tuned 
CLBlast library. Different colors show matrices of different size. Y-axis is the time needed in microsecond 
(us).  



building system. A `native.new_http_archive` object 
should be added the `workspace.blz` file in the 
Tensorflow repository. It should contain the URL 
link to the source code of the repository, the 
SHA256 sum of the downloaded source code, and a 
Bazel BUILD file that defines the compilation rules 
for external libraries.  
 Although a single run of Tensorflow MatMul 
operation was successful on mobile GPU, 
continuous runs of such operation resulted in 
unexpected situation. The program halted with no 
error message thrown and the process was killed by 
Android OS after several seconds. The reason of 
such unexpected error remained unknown and 
required further investigation.     

B. Experiment — Tensorflow MatMul test  
 The purpose of this experiment is to verify the 
correctness of `clMatMulEngine` and identify the 
amount of overhead added to the Tensorflow 
framework. A Tensorflow program `opencl-matmul` 
was created with C++ API from scratch in this 
experiment.  
 `opencl-matmul` test was designed as follow.  
On the desktop platform, two `tf.placeholder` 
python objects were created using Tensorflow 
Python API and passed to `tf.matmul` matrix 
multiplication ops for calculation. The overall 
computational graph was stored using 
`tf.train.write_graph` API. On the Android platform, 
the program rebuilds a computational graph by 
reading the stored .pb file. Two Tensorflow 2D 
Tensors were created and initialized with small 

random floating points values. Both were loaded 
into the runtime by the function call `session-
>Run()`, which also retuned the computed value in 
another Tensor object. To verify the correctness of 
the computation, two `Eigen::Matrix` objects were 
created and initialized by the same value used in the 
initialization of Tensors. Eventually, the matrix 
multiplication results handled by the Eigen 
framework, which depends on mobile CPU, was 
compared with the one computed by Tensorflow 
framework in a element-wise manner. For each 
element in the multiplied matrix, absolute error was 
accumulated and averaged to show the overall 
differences. 
 Various options are available for this test 
including whether the matrices should be transposed 
before multiplication, the number of iteration to run 
the test, and the size of the matrices. This 
experiment was used to load various kinds of 
OpenCL MatMul kernels in the next section. The 
source code can be found in Appendix F: Tensorflow 
MatMul test — opencl-matmul source code.   

C. Experiment —- OpenCL kernel optimization  
 In this section, several OpenCL kernel 
optimization techniques are tested. All experiments 
carried out here were based on the `opencl-matmul`  
program mentioned in previous section.  

C.1.Base line performance 
 In this experiment, the simplest OpenCL 
MatMul kernel (called version 1) was tested against 
the CPU implementation. The performance is shown 
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Figure 15. This is chart shows the Tensorflow overhead when incorporating the CLBLast library into the 
framework. Different colors represent matrices of different size. Y-axis is the square matrix multiplication time 
in microsecond (us).  Left section is the CLBlast program running as a normal OpenCL program. Right section 
is the performance of incorporating it into the Tensorflow framework. 
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FP32 square matrix multiplication performance between CPU Eigen library and 
MatMul kernel 1
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Figure 16. The FP32 square matrix multiplication performance between CPU Eigen library and OpenCL 
kernel version 1. Different colors show matrices of different size. Y-axis is the time needed in microsecond 
(us).  
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in Figure 16. Kernel version 1 is considered as the 
baseline performance because it’s the most 
straightforward matrix multiplication kernel 
available. The programming logic is as follow, a 
work-item is responsible for an element in the 
multiplied matrix. Each work-item performs row-
column element-wise multiplication independently 
and sequentially just like normal human. The 
performance is roughly 2~3 times slower than CPU 
with matrix size equals to 1024.   

C.2.Local memory  
 The usage of local memory gives better 
performance because the access latency is lower [1]. 
With this concept in mind, a new kernel called 
MatMul kernel version 2, was developed and used 
16 by 16 2D local memory. The performance 
improvement between kernel version 1 and version 2 
can be observed in Figure 17. The usage of local 
memory dramatically decreases the number of bytes 
loaded by a work-item. The performance is ~ 2 times 
faster than kernel version 1 given matrix size equals 
to 1024.   
 The limitation of such kernel is the capability to 
handle boundary cases. The local memory size if 
fixed to 16*16 in this kernel, which gives 
miscalculated the results given matrix size isn’t a 
multiple of 16.  

C.3.Transpose before Multiplication  
 Inspired by the matrix multiplication example in 
Qualcomm Adreno SDK, given a matrix 
multiplication task C=A*B, all matrices are stored in 

row-major arrays ( default configuration in 
Tensorflow ) . The access pattern to matrix B isn’t 
aligned. Such access pattern is considered bad 
because of low cache hit rate.  
 The engineering challenge is that no matter how 
we arrange both of the matrices (A and B), one of 
them must be accessed in an unaligned manner. The 
solution to such problem is to transpose matrix B 
before the matrix multiplication. As a result, the 
access pattern to B_T (transposed) matrix is aligned 
and the cache hit rate is high. This optimization 
technique comes at the cost of additional matrix 
transpose operation. From Snapdragon profiler, the 
L2 cache read hit rate of this transposed-before-
multiply kernel reaches ~96% for a 64*64 square 
matrix multiplication task.   
 Also, due to the design limitation, this kernel is 
designed to be a 1D kernel, each work-item is 
mapped to a row in the multiplied matrix. Each 
work-item caches a piece of data into the local 
memory (coalesced memory access) and shared with 
all the work-items within the same work-group to 
minimize the memory load operation per work-item. 
 In addition, this kernel fully utilizes the memory 
bandwidth by vectorized load. The memory 
bandwidth of Adreno 540 system is 128 bits, which 
equals to float4 datatype. Thus, all memory load 
operation in this kernel was designed to load 4 FP32 
values from memory each time.  
 Each work-item writes to a single element in the 
multiplied matrix because the coalesced memory 
store to global memory isn’t supported on Adreno 
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FP32 square matrix multiplication performance between kernel v2 and kernel v3
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Figure 18. The FP32 square matrix multiplication performance between OpenCL kernel version 2 and 
OpenCL kernel version 3. Different colors show matrices of different size. Y-axis is the time needed in 
microsecond (us).  
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FP32 square matrix multiplication performance of kernel v3 with different vectorization ratio 
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Figure 19. The FP32 square matrix multiplication performance of OpenCL kernel version 3 with different 
vectorization ratio. Different colors show matrices of different size. Y-axis is the time needed in 
microsecond (us).  

FP32 square matrix multiplication performance of kernel v3 with OpenCL memory 
object 
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Figure 20.5. The FP32 square matrix multiplication performance of OpenCL kernel version 3 with 
different OpenCL memory object. Different colors show matrices of different size. Y-axis is the time 
needed in microsecond (us).  



5xx series GPU.  
 With all optimization techniques mentioned 
above, the performance between kernel version 2 
and the newly developed kernel 3 is shown in Figure 
18. Out-of-expectation, the new kernel is worse than 
kernel 2.  

C.4.Vectorization  
 The result from previous section gave no 
obvious improvement. The vectorization ratio was 
further increased to observed the differences. The 
vectorization ratio was increased from 4 to 16 to 
observe the best ratio. Results shown on Figure 19.   
The best vectorization ratio float datatype for this 
kernel is 16. 

C.5.Workgroup size  
 Work group size is an OpenCL device 
dependent parameter. It should be tuned for a new 
device because the performance isn’t portable. The 
work group size is related to the workload for each 
work-item. GPU stays idle most of the time given 
suboptimal work-group size, the amount of work 
distributed to GPU isn’t able to keep it busy all the 
time. As a result, the advantage of latency hiding 
cannot be achieved and the performance is worse. 
On the contrary, given an over-estimated work group 
size, the performance remains the same because the 
maximum throughput has been reached. Further 
increase the work group size gives no better 
performance. On Table 2, optimal work group size 
for Adreno 540 GPU was found for different 

vectorization ratio of kernel 3. 

!  
C.6.Different OpenCL memory object  

 This optimization technique is specific to 
Adreno GPU because of its GPU architecture 
mentioned in the analyze of the problem section or 
best illustrated in Figure 2. The optimization trick 
was mentioned in a blog post on Qualcomm 
developer network [20]. In order to fully utilize the 
existing cache system, given a C=A*B matrix 
multiplication problem, matrix A is allocated as an 
OpenCL image object while matrix B is created as a 
normal OpenCL buffer. The methodology of such 
operation is to fully utilize the L1 cache located on 
the texture processor. Ideally, with the help of L1 
cache, fewer memory traffic will pass to the system 
memory and the overall performance can be 
increased.  
 However, replacing the existing OpenCL buffer 
object with image object is troublesome because the 

Kernel name WG size 

tf-kernel 3-fp32-float4 16

tf-kernel 3-fp32-float8 16

tf-kernel 3-fp32-float16 64

Table 2. The optimal work group size for MatMul 
kernel 3 with different vectorization ratio. 
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Figure 20. The FP16 square matrix multiplication performance of OpenCL kernel version 3 with different 
vectorization ratio. Different colors show matrices of different size. Y-axis is the time needed in 
microsecond (us).  

FP16 square matrix multiplication performance of kernel v3 with different vectorization ratio 
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carefully designed kernel is incompatible. The 
compromised option is to create an OpenCL image 
memory object from the existing buffer object. The 
results of such operations is shown on Figure 20.5.   
 The Figure shows performance reduction. After 
careful investigation into the GPU L1 and L2 cache 
hit rate, it’s observed that it’s impossible to create a 
true OpenCL image object from OpenCL buffer. The 
converted OpenCL image object is treated as a 
normal buffer object and nothing was loaded into the 
texture processor or L1 cache memory. Perhaps a 
new MatMul kernel should be developed to validate 
the possibility of such optimization technique.    

C.7.FP16 over FP32 
 Claimed by Qualcomm, the throughput of FP16 
is doubled compared to FP32. Additionally, data size 
is half of FP32, which further shorten the memory 
transfer time. The purpose of this experiment is to 
investigate the possibility of training the MNIST 
model on mobile GPU with FP16 precision.  
 A new class `clQualcommFP16Engine` was 
created with the following modification. All FP32 
data would be converted to FP16 equivalent before 
the matrix multiplication. Matrices filled with FP16 
values were passed to the MatMul kernel arguments. 
The FP16 kernel is similar to the FP32 one with 
slight modification on memory load/store operation. 
To save the effort of conversion, a FP32 variable 
was used to store the results of FP16 multiplication. 
Each element in the multiplied matrix if of type 
FP32. The result is shown in Figure 20.   
 On Figure 20, there’s minor improvement in 
speed but the quality deteriorated as the number of 
matrices grow. For square matrix multiplication of 
size greater than 64. The per element accumulated 
error reached 0.1. Depending on the range of 
matrices data, the error fluctuated and the result 
wasn’t stable. Furthermore, FP16 MatMul 
implementation cannot be applied to an AI training 
task because multiple sequential matrix 

multiplication results in unacceptable error. Despite 
the fact that this is the best performance achieved, 
the training task in the following section will be 
tested with a FP32 MatMul kernel.   

C.8.Miscellaneous  
 Other optimization techniques have been 
implemented but no obvious performance 
improvement was observed. In this section, the 
miscellaneous optimization techniques are discussed 
including avoid the usage of `size_t` in kernel code, 
avoid integer module operation, use fast integer 
multiplication, and loop unrolling.  
 The reason why `size_t` data type should be 
avoided in an OpenCL kernel is the complexity of 
computing 64 bits integers. The `size_t` datatype 
will be promoted automatically by the compiler to 
64 bits integer on 64-bit OS. Adreno GPU has to 
emulate a 64 bits integer with two 32 bits registers. 
The additional resource consumption is unnecessary 
if it can be replaced with other datatype.  All integer 
variables in the MatMul kernel was defined with the 
smallest functional datatype. The resource allocated 
for a variable just meets the required range of 
operation. For instance, it’s impossible for matrices 
size to exceed 2^16=65535. Thus, all related 
variables were defined with the `cl_ushort` datatype, 
which to some extent, might reduce the computation 
and memory transfer time. Nonetheless, no obvious 
improvement was observed.  
 Integer module operation is expensive and 
another way to get the same result is binary AND 
operation. A mod 4 operation is equivalent to a 
binary AND operation with 3 (0x11). 
 Integer multiplication is expensive in Adreno 
GPU. If the expected result falls within the range of 
[-2^23, 2^23-1] (singed) or [0, 2^24-1] (unsigned), 
the `mul24` instruction is faster because fewer bits 
are calculated. However, the replacement of the 
`mul24` instruction gave minor performance 
improvement.  
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Figure 21. The computational graph for MLP model. 



 Loop unrolling is a common optimization 
technique to reduce the number branch instruction in 
a loop. This is applied to MatMul kernel by adding a 
compiler hint (#progma unroll) before a loop. A 
compiler will unroll the loop if it predicts such 
operation will increase the performance. However, 
loop unrolling gives no obvious improvement in this 
case.   

D. Training MNIST dataset with various AI 
models    

 With all MatMul OpenCL kernel tested in the 
previous section, training an AI model on mobile 
GPU is feasible and the result will be discussed in 
this section.  

D.1.AI model structure 
 In this experiment, two AI model, MLP and 
DNN, will be trained. The structure of two AI 
models are defined by the following Tensorflow 
computational graph. The structure of MLP model is 
shown on Figure 21, and the DNN model shown on 
Figure 22. Refer to the analyze of problem section to 
revisit analyze of MatMul operation in each AI 
model.  

D.2.The design of pure training program  
 The purpose of this pure training program is to 
measure the time needed for training. Batches of 
training data will be loaded into Tensorflow runtime 
for computation. After the training process is done, 
the time passed will be calculated. Eventually, the 
testing samples will be loaded for 100 samples at a 
time. The overall accuracy is accumulated and 
averaged for the final model accuracy. The source of 
this pure training program can be found in Appendix 
C: MNIST pure trainer program source code.  

D.3.The design of training logger program  
 During the development process, it’s hard to 
debug an AI training program without understanding 
the current training accuracy. Thus, this program is 
designed to probe the trained model after a batch of 
training data is used to trained the model. The 
probed accuracy will be logged on mobile devices 
and viewed on desktop computer to inspect the 
training progress over iterations. Expectedly, this 
program is time consuming because testing a model 
for each training batch is computationally expensive. 
In the following discussion, the training progress on 
desktop computer is set as the ground truth to 

Page !  of !23 85

Figure 22. The computational graph for DNN model. 
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Figure 24. The DNN training accuracy on desktop computer. 

Figure 25. The MLP training accuracy on mobile CPU.  

Figure 23. The MLP training accuracy on desktop computer. 

ChengWei
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Figure 26. The DNN training accuracy on mobile CPU.  

Figure 27. The MLP training accuracy on mobile GPU.  

Figure 28. The DNN training accuracy on mobile GPU.  



compare with the training progress on mobile CPU/
GPU.  The source code can be found in Appendix D: 
MNIST training logger program  source code. 

D.4.Training accuracy  
 Figure 23 and Figure 24 show the MLP and 
DNN model training progress on desktop CPU. 
Figure 25 (MLP) and Figure 26 (DNN) show the 
training progress on mobile CPU. Figure 27 (MLP) 
and Figure 28 (DNN) show the training progress on 
mobile GPU. From Figure 23 to 28, it’s obvious that 
the training results on mobile GPU is equivalent to 
the results obtained from desktop computer or 
mobile CPU. Which further proves that training on 
mobile GPU is successful, and the implementation 
reaches the project goal.  

D.5.Training time  
 The pure training performance on mobile CPU 
is shown in Table 3. The pure training performance 
on mobile GPU with different MatMul kernel 
implementations are shown from Table 4 to 6.  
Notice that the batch size is different for MLP and 
DNN model because the Tensorflow optimizer 
cannot reach a convergent result given large batch 
size in MLP model.   
 Observed from the results, the training accuracy 
are the same for both mobile CPU and GPU. The 
performance of CPU is still way faster than mobile 
GPU. The explanation for such phenomenon will be 
discussed in the discussion section.  
 Compared the results on Table 5 and 6, The 
DNN training time decreased by 26% because of 
higher vectorization ratio. At the same time, the 
MLP training time decreased by merely 6%. Figure 

29. visualizes the results of training time on mobile 
GPU.

Table 3. Training performance on mobile CPU

Model Name Overall 
Accuracy 
(%)

Training 
Time (s)

Batch Size

MLP 78.3435 5.34335 100

DNN 96.7990 216.708 1000

Table 4. Training performance on mobile GPU

Model Name Overall 
Accuracy 
(%)

Training 
Time (s)

Batch Size

Kernel Used `MatMul_TN_1D_Fp32_Float4` + 
`MatTrans_1D_Fp32_Float4`

MLP 79.2828 56.3333 100

DNN 96.7909 508.305 1000

Table 5. Training performance on mobile GPU

Model Name Overall 
Accuracy 
(%)

Training 
Time (s)

Batch Size

Kernel Used MatMul_TN_1D_Fp32_Float8` + 
`MatTrans_1D_Fp32_Float8

MLP 80.0404 56.5589 100

DNN 97.2151 527.089 1000
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MNIST training time on mobile GPU 
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Figure 29. The MNIST training performance. Blue bar represents the time for MLP, and green for 
DNN. Y-axis is the time needed in second .  



E. GPU Computing capability 
 This section explores the computing capability 
of mobile GPU/CPU by measuring the floating point 
operations per second in the square matrix 
multiplication benchmark.  
 From GeekBench [21], the throughput for 
Snapdragon 835 CPU is roughly about 11.5 
GFLOPS. Based on our experiments, the throughput 
of was calculated as follow. For a square matrices 
multiplication task, the number of floating point 
operations roughly equals to N^3. As a result, the 
computed throughput is shown on Figure 30. The 
result obtained is slightly lower than GeekBench’s 
measurement, the maximum throughput for CPU is 
~7 GFLOPS, and GPU is ~ 6 GFLOPS.   

VIII.DISCUSSION OF RESULTS 
A.  Experiment — CLBlast evaluation 

 The tuned version of CLBlast OpenCL BLAS 
library is by far the fastest kernel tested on Adreno 
540 GPU. In Figure 14. the performance of the tuned 
CLBlast library is slower than CPU if matrix size is 
smaller than 1024. The reason is as follow, profiled 
by the Snapdragon profiler, the actual computation 
consists of a small portion of time. A large portion of 
time (1272428 us ~= 1.2 sec ) was spent on the 
compilation of OpenCL kernel source code as shown 
in Figure 31. Since the performance measurements 
in Figure 14. were averaged for 10 iterations. As a 
result, given the actual computation consists of a 
small portion of time (i.e. matrix size < 1024), the 
kernel compilation time boosts up the average time 
significantly.  
 The compilation of BLAS OpenCL kernel 
source code in CLBlast library could be further 
identified by the measurement of Tensorflow 
overhead in Figure 15. The excessive time is 
contributed by the compilation of kernel source 
code. The CLBlast library is designed in a smart way 
such that the compilation process is needed only for 
the first run. The compiled binary will be cached in 
the system and a new OpenCL program will be 
created from binary instead of from source.         

B. Experiment —- OpenCL kernel optimization  
 Among all kernels implemented in this paper, 
the 1D kernel with `transpose before multiply` 
method gives the best performance. For different 
ratio of vectorization, the float16 data type is the 

Table 6. Training performance on mobile GPU

Model Name Overall 
Accuracy 
(%)

Training 
Time (s)

Batch Size

Kernel Used MatMul_TN_1D_Fp32_Float16` + 
`MatTrans_1D_Fp32_Float16

MLP 78.8788 53.1919 100

DNN 96.6364 388.855 1000

Page !  of !27 85

Figure 31. The time spent on building CLBlast OpenCL kernel. 
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Figure 30. The throughput of Snapdragon 835 CPU and Adreno 540 GPU in square matrix 
multiplication task. X-axis is the size of the matrix. Y-axis is the throughput in GFLOPS. 



most efficient. In additional, miscellaneous 
optimization techniques were applied. Notice that 
not all optimization strategy was integrated 
successfully, changing from FP32 multiplication 
FP16 wasn’t successful because of the deteriorated 
precision, and replacing memory object from 
OpenCL buffer with image gave worse performance. 
Combined, MatMul kernel version 3 (FP32) with 
vectorization ratio of 16 gives the best performance 
among all manually designed kernels (CLBlast 
excluded). The performance comparison is shown on 
Figure 32. Still, mobile GPU is slower than mobile 
CPU. However, some additional factors should be 
taken into considerations including the theoretical 
throughput of mobile CPU/GPU, and the memory 
transfer time between host and OpenCL device. 

C. Training MNIST dataset with various AI 
models 

 Compared with the MNIST training results on 
desktop computer, mobile CPU or GPU is capable of 
reaching the same model accuracy. The difference of 
growth rate between mobile platform and desktop 
platform is unexpected, the training accuracy 
increases dramatically on desktop computer while it 
grows slowly on mobile platform. Perhaps there’re 
some API level optimization for Tensorflow Python 
API that causes the difference.  

IX.LIMITATION  

 The limitations of this project is separated into 
software part and hardware part.  
 For the software design of clMatMulEngine, an 
OpenCL context object is created for each matrix 
multiplication operation in Tensorflow runtime. 
Many OpenCL host side objects are created and 
released after computation. Such design choice isn’t 
efficient because a context object, device object, 
command queue object can be reused in the next 
operation. In other words, the OpenCL host side 
objects should be kept for the same OpenCL 
devices. Host-side initialization should only be done 
once for a device. During the research phase of this 
project, such limitation was identified. The  original 
initiative was to build a well-integrated OpenCL 
version of Tensorflow. The plan was cancelled 
because the estimated amount of engineering work is 
beyond the workload of this project. Such operation 
requires deep integration of OpenCL into the 
Tensorflow framework.   
 For the hardware limitation, the closed source 
architecture of Adreno GPU makes it challenging to 
verify the optimization strategy. For instance, the 
info about the size of the on-chip local memory, the 
size of L2 cache, the size of L1 cache aren’t revealed 
by Qualcomm. 

X. CONCLUSION 
 The advancement of computing power on 
mobile devices and the recent progress in AI push 
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FP32 Performance comparison between CPU & MatMul kernel v3 with float16 
vectorization
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Figure 32. The FP32 square matrix multiplication performance of OpenCL kernel version 3 with 
float16 vectorization and CPU. Different colors show matrices of different size. Y-axis is the time 
needed in microsecond (us).  



the computation toward the users’ end. In this report, 
the possibility of training AI models on mobile 
devices was explored by embedding OpenCL code 
into the Tensorflow framework. Also multiple 
benchmarks were tested on the mobile platform to 
understand the characteristics of the heterogeneous 
computing platform. The training and inference 
processes on mobile devices were accelerated by 
off-loading the intensive computation from mobile 
CPU to GPU. Also, training a MNIST dataset on 
mobile GPU was successful. Despite the matrix 
multiplication task was slower on mobile GPU. The 
best version of the manually designed OpenCL 
kernel outperformed the baseline performance by 
2.16 times for square  matrix multiplication of size 
1024. Further investigation is needed to unveil the 
underlying hardware architecture of mobile GPU, 
and explore the capability of mobile AI applications.   
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XII.APPENDIX  
A. clMatMulEngine design source code  
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// clMatMulEngine<float>

//     |

//     v

// clQualcommFP32Engine <---- binaryLoaderInterface


// clMatMulEngine<float>

//     |

//     v

// clQualcommFP16Engine <---- binaryLoaderInterface


// clMatMulEngine<float>

//     |

//     v

// clBLASTEngine


#ifndef MATMUL_CL_FUNCTOR_H_

#define MATMUL_CL_FUNCTOR_H_


#include <fstream>


#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"

#include "tensorflow/core/framework/tensor.h"

#include "tensorflow/core/framework/tensor_types.h"

#include "tensorflow/core/lib/hash/hash.h"

#include "tensorflow/core/platform/logging.h"


#define CL_USE_DEPRECATED_OPENCL_1_2_APIS // to disable deprecation warnings


// Includes the CLBlast library (C interface)

#include "clblast_c.h"


////////////////////////////////////////////////////////////////////////////////

// OpenCL status checker

#define CL_CHECK(_expr)                                                        \

  {                                                                            \

    cl_int _err = _expr;                                                       \

    if( _err != CL_SUCCESS) {                                                  \

      std::cerr << "OpenCL Error: " << #_expr << " returned " << (int)_err     \

      << std::endl;                                                            \

    }                                                                          \

  }

// OpenCL return type checker

#define CL_CHECK_ERR(_expr)                                                    \

  ({                                                                           \

    cl_int _err = CL_INVALID_VALUE;                                            \

    decltype(_expr) _ret = _expr;                                              \

    if (_err != CL_SUCCESS) {                                                  \

      std::cerr << "OpenCL Error: " << #_expr << " returned " << (int)_err     \

      << std::endl;                                                            \

    }                                                                          \

    _ret;                                                                      \

  })


////////////////////////////////////////////////////////////////////////////////
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// float to cl_half conversions

#ifndef INFINITY

  #define INFINITY 1.0/0.0

#endif


#ifndef NAN

  #define NAN 0.0/0.0

#endif


typedef union {

  int32_t i;

  float f;

} FloatConvUnion;


cl_half float_to_cl_half(float value){


  FloatConvUnion u;

  u.f = value;

  cl_half half = (u.i >> 16) & 0x8000; // sign

  cl_half fraction = (u.i >> 12) & 0x007ff; // fraction with extra bit for rounding

  cl_half exponent = (u.i >> 23)  & 0xff; // exponent


  if(exponent < 0x0067) // Return signed zero if zero or value is too small for denormal half

    return half;


  if(exponent > 0x008e){// value was NaN or Inf

    half |= 0x7c00u; // Make into inf

    half |= exponent == 255 && (u.i & 0x007fffffu); // If value was NaN make this into NaN

    return half;

  }


  if(exponent < 0x0071){// Denormal

    fraction |= 0x0800u;


    // rounding

    half |= (fraction >> (0x0072 - exponent)) + ((fraction >> (0x0071 - exponent)) & 1);

    return half;

  }


  half |= ((exponent - 0x0070) << 10) | (fraction >> 1);

  half += fraction & 1;// rounding

  return half;

}


//////////////////////////////////////////////////////////////////////////////////////////

// clSetKernelArg Helper

#define SET_GEMM_TN_KERNEL_ARG(M, K, N, clMemA, clMemB, clMemC, localSize, 
localMemType, \

  iter)                                                                                  \

  CL_CHECK( clSetKernelArg(clGemmKernel, 0, sizeof(cl_ushort), &M) );                    \

  CL_CHECK( clSetKernelArg(clGemmKernel, 1, sizeof(cl_ushort), &K) );                    \

  CL_CHECK( clSetKernelArg(clGemmKernel, 2, sizeof(cl_ushort), &N) );                    \

  CL_CHECK( clSetKernelArg(clGemmKernel, 3, sizeof(cl_mem), &clMemA) );                  \

  CL_CHECK( clSetKernelArg(clGemmKernel, 4, sizeof(cl_mem), &clMemB) );                  \
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  CL_CHECK( clSetKernelArg(clGemmKernel, 5, sizeof(cl_mem), &clMemC) );                  \

  CL_CHECK( clSetKernelArg(clGemmKernel, 6, localSize * sizeof(localMemType), NULL) );   \

  CL_CHECK( clSetKernelArg(clGemmKernel, 7, sizeof(cl_ushort), &iter) );                 \


//////////////////////////////////////////////////////////////////////////////////////////

// clSetKernelArg Helper

#define SET_TRANS_KERNEL_ARG(ROW, COL, clMem, clMem_T, iter)                             \

  CL_CHECK( clSetKernelArg(clTransKernel, 0, sizeof(cl_ushort), &ROW) );                 \

  CL_CHECK( clSetKernelArg(clTransKernel, 1, sizeof(cl_ushort), &COL) );                 \

  CL_CHECK( clSetKernelArg(clTransKernel, 2, sizeof(cl_mem), &clMem) );                  \

  CL_CHECK( clSetKernelArg(clTransKernel, 3, sizeof(cl_mem), &clMem_T) );                \

  CL_CHECK( clSetKernelArg(clTransKernel, 4, sizeof(cl_ushort), &iter) );                \


using namespace std;


namespace tensorflow {

  typedef Eigen::ThreadPoolDevice CPUDevice;


  // clMatMulEngine abstract class (interface), computing datatype T

  template<class T> class clMatMulEngine {

    public:


    // Concrete methods

      // clMatMulEngine initializaiotn function

      cl_int hostInit(

        typename functor::MatMulTypes<T>::in_type in0,

        typename functor::MatMulTypes<T>::in_type in1,

        typename functor::MatMulTypes<T>::out_type out,

        const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair)

      {

        // Matrix dimension init

        RowA = in0.dimension(0);

        ColA = in0.dimension(1);

        RowB = in1.dimension(0);

        ColB = in1.dimension(1);

        RowC = out.dimension(0);

        ColC = out.dimension(1);


        // Matrix size checking

        int matrixSizeLimit = 0xffff; // Maximum value for cl_ushort

        if( RowA > matrixSizeLimit ||

            ColA > matrixSizeLimit ||

            RowB > matrixSizeLimit ||

            ColB > matrixSizeLimit ||

            RowC > matrixSizeLimit ||

            ColC > matrixSizeLimit )

        {

          LOG(ERROR) << "Matrix of Size Larger than " << matrixSizeLimit <<

          " isn't supported";

        }


        // Matrix size init

        a_size = sizeof(T) * RowA * ColA;

        b_size = sizeof(T) * RowB * ColB;
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        c_size = sizeof(T) * RowC * ColC;


        // Matrix transpose

        a_traspose = ( dim_pair[0].first == 0 ) ? true : false;

        b_traspose = ( dim_pair[0].second == 1 ) ? true : false;


        // Query platforms

        CL_CHECK( clGetPlatformIDs(1, &platform, NULL) );


        // Query devices

        CL_CHECK( clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &clDevice, NULL) );


        // Create context

        clCtx = CL_CHECK_ERR( clCreateContext(NULL, 1, &clDevice, NULL, NULL, &_err) );


        // Create command clQueue

        clQueue = CL_CHECK_ERR( clCreateCommandQueue(clCtx, clDevice, 0, &_err) );


        return CL_SUCCESS;

      }


      // Print debug info

      void debug( bool print=true ){

        if( print ){

          LOG(INFO) << "Dealing with datatype of size " << sizeof(T);

          LOG(INFO) << "MatrixA = [" << RowA << "," << ColA  << "]";

          LOG(INFO) << "MatrixB = [" << RowB << "," << ColB  << "]";

          LOG(INFO) << "MatrixC = [" << RowC << "," << ColC  << "]";

        }

      }


      // Print input-output matrices

      void printMatrix(

        typename functor::MatMulTypes<T>::in_type in0,

        typename functor::MatMulTypes<T>::in_type in1,

        typename functor::MatMulTypes<T>::out_type out)

      {

        LOG(INFO) << "MatMul Matrix details";

        LOG(INFO) << std::endl << in0;

        LOG(INFO) << std::endl << in1;

        LOG(INFO) << std::endl << out;

      }


    // Virtual methods

      // Release all OpenCL related resourcse

      virtual cl_int clEnd() = 0;


      // Load computed results back to memroy

      virtual cl_int memLoad(typename functor::MatMulTypes<T>::out_type out) = 0;


      // OpenCL memeory object init

      virtual cl_int memInit( typename functor::MatMulTypes<T>::in_type in0,

        typename functor::MatMulTypes<T>::in_type in1) = 0;
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    protected:


      // Default matrix dimension

      size_t RowA = 0;

      size_t ColA = 0;

      size_t RowB = 0;

      size_t ColB = 0;

      size_t RowC = 0;

      size_t ColC = 0;


      // Matrix tranpose info

      bool a_traspose;

      bool b_traspose;


      // Default matrix size

      size_t a_size = 0;

      size_t b_size = 0;

      size_t c_size = 0;


      // OpenCL host side object

      cl_platform_id platform;

      cl_device_id clDevice;

      cl_context clCtx;

      cl_command_queue clQueue;


      // Timer

      std::chrono::high_resolution_clock::time_point timer;


      void startTimer(){

        timer = std::chrono::high_resolution_clock::now();

      }


      double read_us(){

        auto elapsed_time = std::chrono::high_resolution_clock::now() - timer;

        return std::chrono::duration<double, std::micro>(elapsed_time).count();

      }


      // Performance calculator

      void getPerformance(){


        std::ofstream ofs ("performance.log", std::ios_base::app);


        long double delta_t = read_us() * 1e-6; // delta_t in second


        double bandwidth = 1e-9*(a_size+b_size+c_size)/delta_t;

        ofs << bandwidth << " GB/s, ";


        long double gflops = 1e-9*(RowA*ColA*RowB*ColB*RowC*ColC)/delta_t;

        ofs << gflops << " GFLOPS\n";


        ofs.close();

      }


  };  // class clMatMulEngine
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  // binaryLoaderInterface abstract class (interface)

  class binaryLoaderInterface{

    public:


    // Virtual method

      // Compile & Compute the results

      virtual cl_int loadFromBinaryCompute() = 0;


    protected:


    // Concrete methods

      // Read OpenCL binary file from disk

      int read_file(unsigned char **output, size_t *size, const char *name)

      {

        FILE* fp = fopen(name, "rb");

        if (!fp) {

          LOG(ERROR) << "Fail to read cl kernel binary " << std::string( name );

          return -1;

        }


        fseek(fp, 0, SEEK_END);

        *size = ftell(fp);

        fseek(fp, 0, SEEK_SET);


        *output = (unsigned char *)malloc(*size);

        if (!*output) {

          fclose(fp);

          return -1;

        }

        fread(*output, *size, 1, fp);

        fclose(fp);

        return 0;

      }


      // Show clKernel object info

      void debugOpenclKernel(cl_kernel cl_kernel, cl_device_id cl_device){


        // Kernel info

        size_t wgSize = 0;

        size_t compiledWgSize[3];

        cl_ulong localMemSize = 0;

        size_t perfHint;

        cl_ulong privateMemSize = 0;


        CL_CHECK( clGetKernelWorkGroupInfo(cl_kernel, cl_device,

                    CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wgSize, NULL) );

        CL_CHECK( clGetKernelWorkGroupInfo(cl_kernel, cl_device,

                    CL_KERNEL_COMPILE_WORK_GROUP_SIZE, 3 * sizeof(size_t),

                    &compiledWgSize, NULL) );

        CL_CHECK( clGetKernelWorkGroupInfo(cl_kernel, cl_device,

                    CL_KERNEL_LOCAL_MEM_SIZE, sizeof(cl_ulong), &localMemSize,

                    NULL) );

        CL_CHECK( clGetKernelWorkGroupInfo(cl_kernel, cl_device,
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  // binaryLoaderInterface abstract class (interface)

  class binaryLoaderInterface{

    public:


    // Virtual method

      // Compile & Compute the results

      virtual cl_int loadFromBinaryCompute() = 0;


    protected:


    // Concrete methods

      // Read OpenCL binary file from disk

      int read_file(unsigned char **output, size_t *size, const char *name)

      {

        FILE* fp = fopen(name, "rb");

        if (!fp) {

          LOG(ERROR) << "Fail to read cl kernel binary " << std::string( name );

          return -1;

        }


        fseek(fp, 0, SEEK_END);

        *size = ftell(fp);

        fseek(fp, 0, SEEK_SET);


        *output = (unsigned char *)malloc(*size);

        if (!*output) {

          fclose(fp);

          return -1;

        }

        fread(*output, *size, 1, fp);

        fclose(fp);

        return 0;

      }


      // Show clKernel object info

      void debugOpenclKernel(cl_kernel cl_kernel, cl_device_id cl_device){


        // Kernel info

        size_t wgSize = 0;

        size_t compiledWgSize[3];

        cl_ulong localMemSize = 0;

        size_t perfHint;

        cl_ulong privateMemSize = 0;


        CL_CHECK( clGetKernelWorkGroupInfo(cl_kernel, cl_device,

                    CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wgSize, NULL) );

        CL_CHECK( clGetKernelWorkGroupInfo(cl_kernel, cl_device,

                    CL_KERNEL_COMPILE_WORK_GROUP_SIZE, 3 * sizeof(size_t),

                    &compiledWgSize, NULL) );

        CL_CHECK( clGetKernelWorkGroupInfo(cl_kernel, cl_device,

                    CL_KERNEL_LOCAL_MEM_SIZE, sizeof(cl_ulong), &localMemSize,

                    NULL) );

        CL_CHECK( clGetKernelWorkGroupInfo(cl_kernel, cl_device,
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        // Return CL_SUCCESS if all resources are released successfully

        return CL_SUCCESS;

      }


      cl_int memLoad(typename functor::MatMulTypes<float>::out_type out){


        // Use the map function to return clBufferA pointer to the host <= blocking

        clHostPtrC = ( cl_float * ) clEnqueueMapBuffer(clQueue, clBufferC, CL_TRUE,

                          CL_MAP_READ, 0, c_size, 0, NULL, NULL, NULL);


        // Read computed result back to host

        for( auto idx = 0 ; idx < RowC*ColC ; idx++){

          out.data()[idx] = clHostPtrC[idx];

        }


        // Release OpenCL resources

        CL_CHECK( clEnd() );


        // Return if the results are loaded to memory & OpenCL resources are released

        return CL_SUCCESS;

      }


      cl_int memInit(

        typename functor::MatMulTypes<float>::in_type in0,

        typename functor::MatMulTypes<float>::in_type in1)

      {


        // Use zero copy to avoid additional memeory copy

        // Matrix A

        clBufferA = clCreateBuffer(clCtx, CL_MEM_HOST_WRITE_ONLY | 
CL_MEM_ALLOC_HOST_PTR,

                      a_size, NULL, NULL);

        // Use the map function to return clBufferA pointer to the host <= non-blocking

        clHostPtrA = ( cl_float * ) clEnqueueMapBuffer(clQueue, clBufferA, CL_FALSE,

                                      CL_MAP_WRITE, 0, a_size, 0, NULL,

                                      &mapBufferEvents[0], NULL);

        // Matrix B

        clBufferB = clCreateBuffer(clCtx, CL_MEM_HOST_WRITE_ONLY | 
CL_MEM_ALLOC_HOST_PTR,

                          b_size, NULL, NULL);

        // Use the map function to return clBufferA pointer to the host <= non-blocking

        clHostPtrB = ( cl_float * ) clEnqueueMapBuffer(clQueue, clBufferB, CL_FALSE,

                                      CL_MAP_WRITE, 0, b_size, 0, NULL,

                                      &mapBufferEvents[1], NULL);


        // Create GPU buffer for transposed matrices only if needed

        if( a_traspose ){

          clBufferA_T = clCreateBuffer(clCtx, CL_MEM_HOST_NO_ACCESS, a_size, NULL, 
NULL);

        }

        if( !b_traspose ){

          clBufferB_T = clCreateBuffer(clCtx, CL_MEM_HOST_NO_ACCESS, b_size, NULL, 
NULL);
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        }


        // Wait for completion

        CL_CHECK( clWaitForEvents(2, mapBufferEvents) );


        // Host update the buffer using pointer clHostPtrA in host address space

        for( auto idx = 0 ; idx < RowA*ColA ; idx ++){

          clHostPtrA[ idx ] = in0.data()[idx];

        }

        // Host update the buffer using pointer clHostPtrB in host address space

        for( auto idx = 0 ; idx < RowB*ColB ; idx ++){

          clHostPtrB[ idx ] = in1.data()[idx];

        }


        // Unmap the object -> Used in the OpenCL kernel

        CL_CHECK( clEnqueueUnmapMemObject( clQueue, clBufferA, (void*) clHostPtrA,

                    0, NULL, &unMapBufferEvents[0] ) );


        // Unmap the object -> Used in the OpenCL kernel

        CL_CHECK( clEnqueueUnmapMemObject( clQueue, clBufferB, (void*) clHostPtrB,

                    0, NULL, &unMapBufferEvents[1] ) );


        // Matrix C

        clBufferC = clCreateBuffer(clCtx, CL_MEM_HOST_READ_ONLY | 
CL_MEM_ALLOC_HOST_PTR,

                      c_size, NULL, NULL);


        // Wait for completion

        CL_CHECK( clWaitForEvents(2, unMapBufferEvents) );

        return CL_SUCCESS;

      }


      cl_int loadFromBinaryCompute()

      {


        unsigned char* clKernelBinaryFile = NULL;

        size_t clKernelBinSize = 0;

        // Read compiled OpenCL kernel binary file from disk

        read_file(&clKernelBinaryFile, &clKernelBinSize, "matmul.bin" );


        // Create an OpenCL program object from binary

        clProgram = CL_CHECK_ERR( clCreateProgramWithBinary(clCtx, 1, &clDevice,

                                    &clKernelBinSize,

                                    (const unsigned char **)&clKernelBinaryFile,

                                    NULL, &_err) );


        // OpenCL build program

        CL_CHECK( clBuildProgram(clProgram, 1, &clDevice, "-cl-fast-relaxed-math" , NULL, 
NULL) );


        // Create OpenCL GEMM kernel object

        // clGemmKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatMul_TN_1D_Fp32_Float4" , &_err) );
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        // clGemmKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatMul_TN_1D_Fp32_Float8" , &_err) );

        clGemmKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatMul_TN_1D_Fp32_Float16" , &_err) );


        // Create OpenCL Transpose kernel object

        // clTransKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatTrans_1D_Fp32_Float4" , &_err) );

        // clTransKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatTrans_1D_Fp32_Float8" , &_err) );

        clTransKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatTrans_1D_Fp32_Float16" , &_err) );


        cl_ushort gemmKernelIter;

        cl_ushort transKernelIter;


        startTimer();


        // Handle Matrices Transpose

        if( a_traspose && b_traspose ){ // Transpose A: yes, Transpose B: yes


          transKernelIter = ColA >> 4;

          gemmKernelIter = RowA >> 4;


          // Transpose A

          SET_TRANS_KERNEL_ARG(RowA, ColA, clBufferA, clBufferA_T, transKernelIter );


          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

                      &RowA, NULL, 0, NULL, &transKernelEvent[0]) );


          SET_GEMM_TN_KERNEL_ARG(ColA, RowA, RowB, clBufferA_T, clBufferB,

            clBufferC, ColA, float, gemmKernelIter );


          const size_t global = ColA;

          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

                      &global, NULL, 1, transKernelEvent, &gemmKernelEvent) );


          CL_CHECK( clWaitForEvents(1, &gemmKernelEvent) );


        }else if( a_traspose && !b_traspose ){ // Transpose A: yes, Transpose B: no


          transKernelIter = ColA >> 4;

          gemmKernelIter = RowA >> 4;


          // Transpose A

          SET_TRANS_KERNEL_ARG(RowA, ColA, clBufferA, clBufferA_T, transKernelIter );


          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

                      &RowA, NULL, 0, NULL, &transKernelEvent[0]) );


          transKernelIter = ColB >> 4;


          // Transpose B

          SET_TRANS_KERNEL_ARG(RowB, ColB, clBufferB, clBufferB_T, transKernelIter );
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          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

                      &RowB, NULL, 0, NULL, &transKernelEvent[1]) );


          SET_GEMM_TN_KERNEL_ARG(ColA, RowA, ColB, clBufferA_T, clBufferB_T,

            clBufferC, RowA, float, gemmKernelIter );


          const size_t global = ColA;

          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

                      &global, NULL, 2, transKernelEvent, &gemmKernelEvent) );


          CL_CHECK( clWaitForEvents(1, &gemmKernelEvent) );


        }else if( !a_traspose && b_traspose ){ // Transpose A: no, Transpose B: yes


          gemmKernelIter = ColA >> 4;


          SET_GEMM_TN_KERNEL_ARG(RowA, ColA, RowB, clBufferA, clBufferB,

            clBufferC, ColA, float, gemmKernelIter );


          const size_t global = RowA;

          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

                      &global, NULL, 0, NULL, &gemmKernelEvent) );


          CL_CHECK( clWaitForEvents(1, &gemmKernelEvent) );


        }else if( !a_traspose && !b_traspose ){ // Transpose A: no, Transpose B: no


          transKernelIter = ColB >> 4;

          gemmKernelIter = ColA >> 4;


          // Transpose B

          SET_TRANS_KERNEL_ARG(RowB, ColB, clBufferB, clBufferB_T, transKernelIter );


          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

                      &ColA, NULL, 0, NULL, &transKernelEvent[0]) );


          SET_GEMM_TN_KERNEL_ARG(RowA, ColA, ColB, clBufferA, clBufferB_T,

            clBufferC, ColA, float, gemmKernelIter);


          const size_t global = RowA;

          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

                      &global, NULL, 1, transKernelEvent, &gemmKernelEvent) );


          CL_CHECK( clWaitForEvents(1, &gemmKernelEvent) );

        }


        getPerformance();

        return CL_SUCCESS;

      }


    protected:


      // OpenCL memeory object
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      cl_mem clBufferA;

      cl_mem clBufferA_T;

      cl_mem clBufferB;

      cl_mem clBufferB_T;

      cl_mem clBufferC;


      // Host memory data

      cl_float * clHostPtrA;

      cl_float * clHostPtrB;

      cl_float * clHostPtrC;


      // OpenCL events

      cl_event gemmKernelEvent;

      cl_event transKernelEvent[2];

      cl_event mapBufferEvents[2];

      cl_event unMapBufferEvents[2];


      // OpenCL program object

      cl_program clProgram;


      // OpenCL kernel object

      cl_kernel clGemmKernel;

      cl_kernel clTransKernel;


  };  // class clQualcommFP32Engine


  // clQualcommFP16Engine concrete class using Qualcomm GEMM example

  class clQualcommFP16Engine : public clQualcommFP32Engine{

    public:


      cl_int memLoad(typename functor::MatMulTypes<float>::out_type out){


        // Use the map function to return clBufferA pointer to the host <= blocking

        clHostPtrC = ( cl_float * ) clEnqueueMapBuffer(clQueue, clBufferC, CL_TRUE,

                                      CL_MAP_READ, 0, c_size, 0, NULL, NULL, NULL);


        // Read computed result back to host

        for( auto idx = 0 ; idx < RowC*ColC ; idx++){

          out.data()[idx] = clHostPtrC[idx];

        }


        // Release OpenCL resources

        CL_CHECK( clEnd() );


        // Return if the results are loaded to memory & OpenCL resources are released

        return CL_SUCCESS;

      }


      cl_int memInit(

        typename functor::MatMulTypes<float>::in_type in0,

        typename functor::MatMulTypes<float>::in_type in1)

      {


        // FP16 is half of the size of FP32
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        a_size = a_size >> 1;

        b_size = b_size >> 1;


        // Use zero copy to avoid memeory copy

        // Matrix A

        clBufferA = clCreateBuffer(clCtx, CL_MEM_HOST_WRITE_ONLY | 
CL_MEM_ALLOC_HOST_PTR,

                      a_size, NULL, NULL);

        // Use the map function to return clBufferA pointer to the host <= non-blocking

        clHostFp16PtrA = ( cl_half * ) clEnqueueMapBuffer(clQueue, clBufferA, CL_FALSE,

                                        CL_MAP_WRITE, 0, a_size, 0, NULL,

                                        &mapBufferEvents[0], NULL);

        // Matrix B

        clBufferB = clCreateBuffer(clCtx, CL_MEM_HOST_WRITE_ONLY | 
CL_MEM_ALLOC_HOST_PTR,

                      b_size, NULL, NULL);

        // Use the map function to return clBufferA pointer to the host <= non-blocking

        clHostFp16PtrB = ( cl_half * ) clEnqueueMapBuffer(clQueue, clBufferB, CL_FALSE,

                                        CL_MAP_WRITE, 0, b_size, 0, NULL,

                                        &mapBufferEvents[1], NULL);


        // Create GPU buffer for transposed matrices only if needed

        if( a_traspose ){

          clBufferA_T = clCreateBuffer(clCtx, CL_MEM_HOST_NO_ACCESS, a_size, NULL, 
NULL);

        }

        if( !b_traspose ){

          clBufferB_T = clCreateBuffer(clCtx, CL_MEM_HOST_NO_ACCESS, b_size, NULL, 
NULL);

        }


        // Wait for completion

        CL_CHECK( clWaitForEvents(2, mapBufferEvents) );


        // Host update the buffer using pointer clHostFp16PtrA in host address space

        for( auto idx = 0 ; idx < RowA*ColA ; idx ++){

          clHostFp16PtrA[ idx ] = float_to_cl_half( in0.data()[idx] );

        }

        // Host update the buffer using pointer clHostFp16PtrB in host address space

        for( auto idx = 0 ; idx < RowB*ColB ; idx ++){

          clHostFp16PtrB[ idx ] = float_to_cl_half( in1.data()[idx] );

        }


        // Unmap the object -> Used in the OpenCL kernel

        CL_CHECK( clEnqueueUnmapMemObject( clQueue, clBufferA, (void*) clHostFp16PtrA,

                    0, NULL, &unMapBufferEvents[0] ) );


        // Unmap the object -> Used in the OpenCL kernel

        CL_CHECK( clEnqueueUnmapMemObject( clQueue, clBufferB, (void*) clHostFp16PtrB,

                    0, NULL, &unMapBufferEvents[1] ) );


        // Matrix C

        clBufferC = clCreateBuffer(clCtx, CL_MEM_HOST_READ_ONLY | 
CL_MEM_ALLOC_HOST_PTR,
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                      c_size, NULL, NULL);


        // Wait for completion

        CL_CHECK( clWaitForEvents(2, unMapBufferEvents) );

        return CL_SUCCESS;

      }


      cl_int loadFromBinaryCompute()

      {


        unsigned char* clKernelBinaryFile = NULL;

        size_t clKernelBinSize = 0;

        // Read compiled OpenCL kernel binary file from disk

        read_file(&clKernelBinaryFile, &clKernelBinSize, "matmul.bin" );


        // Create an OpenCL program object from binary

        clProgram = CL_CHECK_ERR( clCreateProgramWithBinary(clCtx, 1, &clDevice,

                                    &clKernelBinSize,

                                    (const unsigned char **)&clKernelBinaryFile,

                                    NULL, &_err) );


        // OpenCL build program

        CL_CHECK( clBuildProgram(clProgram, 1, &clDevice, NULL , NULL, NULL) );


        cl_ushort gemmKernelIter;

        cl_ushort transKernelIter;


        // Create OpenCL GEMM kernel object

        // clGemmKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatMul_TN_1D_Fp16_Half4" , &_err) );

        clGemmKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatMul_TN_1D_Fp16_Half8" , &_err) );

        // clGemmKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatMul_TN_1D_Fp16_Half16" , &_err) );


        // Create OpenCL Transpose kernel object

        // clTransKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatTrans_1D_Fp16_Half4" , &_err) );

        clTransKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatTrans_1D_Fp16_Half8" , &_err) );

        // clTransKernel = CL_CHECK_ERR( clCreateKernel(clProgram, 
"MatTrans_1D_Fp16_Half16" , &_err) );


        // Handle Matrices Transpose

        if( a_traspose && b_traspose ){ // Transpose A: yes, Transpose B: yes


          transKernelIter = ColA >> 3;

          gemmKernelIter = RowA >> 3;


          // Transpose A

          SET_TRANS_KERNEL_ARG(RowA, ColA, clBufferA, clBufferA_T, transKernelIter);


          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

                      &RowA, NULL, 0, NULL, &transKernelEvent[0]) );
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          SET_GEMM_TN_KERNEL_ARG(ColA, RowA, RowB, clBufferA_T, clBufferB,

            clBufferC, ColA, cl_half, gemmKernelIter);


          const size_t global = ColA;

          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

                      &global, NULL, 1, transKernelEvent, &gemmKernelEvent) );


          CL_CHECK( clWaitForEvents(1, &gemmKernelEvent) );


        }else if( a_traspose && !b_traspose ){ // Transpose A: yes, Transpose B: no


          transKernelIter = ColA >> 3;

          gemmKernelIter = RowA >> 3;


          // Transpose A

          SET_TRANS_KERNEL_ARG(RowA, ColA, clBufferA, clBufferA_T, transKernelIter);


          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

                      &RowA, NULL, 0, NULL, &transKernelEvent[0]) );


          transKernelIter = ColB >> 3;


          // Transpose B

          SET_TRANS_KERNEL_ARG(RowB, ColB, clBufferB, clBufferB_T, transKernelIter);


          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

                      &RowB, NULL, 0, NULL, &transKernelEvent[1]) );


          SET_GEMM_TN_KERNEL_ARG(ColA, RowA, ColB, clBufferA_T, clBufferB_T,

            clBufferC, RowA, cl_half, gemmKernelIter);


          const size_t global = ColA;

          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

                      &global, NULL, 2, transKernelEvent, &gemmKernelEvent) );


          CL_CHECK( clWaitForEvents(1, &gemmKernelEvent) );


        }else if( !a_traspose && b_traspose ){ // Transpose A: no, Transpose B: yes


          gemmKernelIter = ColA >> 3;


          // Transpose A

          SET_GEMM_TN_KERNEL_ARG(RowA, ColA, RowB, clBufferA, clBufferB,

            clBufferC, ColA, cl_half, gemmKernelIter);


          const size_t global = RowA;

          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

                      &global, NULL, 0, NULL, &gemmKernelEvent) );


          CL_CHECK( clWaitForEvents(1, &gemmKernelEvent) );


        }else if( !a_traspose && !b_traspose ){ // Transpose A: no, Transpose B: no
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          transKernelIter = ColB >> 3;

          gemmKernelIter = ColA >> 3;


          // Transpose B

          SET_TRANS_KERNEL_ARG(ColA, ColB, clBufferB, clBufferB_T, transKernelIter);


          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clTransKernel, 1, NULL,

                      &ColA, NULL, 0, NULL, &transKernelEvent[0]) );


          SET_GEMM_TN_KERNEL_ARG(RowA, ColA, ColB, clBufferA, clBufferB_T,

            clBufferC, ColA, cl_half, gemmKernelIter);


          const size_t global = RowA;

          CL_CHECK( clEnqueueNDRangeKernel(clQueue, clGemmKernel, 1, NULL,

                      &global, NULL, 1, transKernelEvent, &gemmKernelEvent) );


          CL_CHECK( clWaitForEvents(1, &gemmKernelEvent) );

        }

        return CL_SUCCESS;

      }


    private:

      // Copied memory data

      cl_half * clHostFp16PtrA;

      cl_half * clHostFp16PtrB;


  };  // class clQualcommFP16Engine


  // clBLASTEngine concrete class using CLBLAST API

  class clBLASTEngine : public clMatMulEngine<float>{

    public:


      cl_int clEnd(){


        // Free OpenCL memory objects

        CL_CHECK( clReleaseMemObject(clBufferA) );

        CL_CHECK( clReleaseMemObject(clBufferB) );

        CL_CHECK( clReleaseMemObject(clBufferC) );


        // Free OpenCL command queue

        CL_CHECK( clReleaseCommandQueue(clQueue) );


        // Free OpenCL context

        CL_CHECK( clReleaseContext(clCtx) );


        // Free OpenCL events

        CL_CHECK( clReleaseEvent(gemmKernelEvent) );

        CL_CHECK( clReleaseEvent(writeBufferEvents[0]) );

        CL_CHECK( clReleaseEvent(writeBufferEvents[1]) );


        // Return CL_SUCCESS if all resources are released successfully

        return CL_SUCCESS;

      }
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      cl_int memLoad(typename functor::MatMulTypes<float>::out_type out){


        // Read results

        CL_CHECK( clEnqueueReadBuffer(clQueue, clBufferC, CL_TRUE, 0, c_size,

                    out.data(), 0, NULL, NULL) );


        // Release OpenCL resources

        CL_CHECK( clEnd() );


        // Return if the results are loaded to memory & OpenCL resources are released

        return CL_SUCCESS;

      }


      cl_int memInit(

        typename functor::MatMulTypes<float>::in_type in0,

        typename functor::MatMulTypes<float>::in_type in1)

      {


        // Allocate memory buffers

        clBufferA = CL_CHECK_ERR( clCreateBuffer(clCtx, CL_MEM_READ_ONLY, a_size,

                                    NULL, &_err) );

        clBufferB = CL_CHECK_ERR( clCreateBuffer(clCtx, CL_MEM_READ_ONLY, b_size,

                                    NULL, &_err) );

        clBufferC = CL_CHECK_ERR( clCreateBuffer(clCtx, CL_MEM_READ_WRITE, c_size,

                                    NULL, &_err) );


        // Enqueue write buffer commands (acynchronous write)

        CL_CHECK( clEnqueueWriteBuffer(clQueue, clBufferA, CL_FALSE, 0, a_size,

                    in0.data(), 0, NULL, &writeBufferEvents[0]) );


        CL_CHECK( clEnqueueWriteBuffer(clQueue, clBufferB, CL_FALSE, 0, b_size,

                    in1.data(), 0, NULL, &writeBufferEvents[1]) );


        // Wait for completion

        CL_CHECK( clWaitForEvents(2, writeBufferEvents) );

        return CL_SUCCESS;

      }


      cl_int clBlastCompute()

      {

        // Whether Matrix A, B should be transposed

        auto MatATranspose = ( a_traspose == true ) ?

                              CLBlastTransposeYes : CLBlastTransposeNo;

        auto MatBTranspose = ( b_traspose == true ) ?

                              CLBlastTransposeYes : CLBlastTransposeNo;


        // Leading dimension of the input A matrix. This value must be greater than 0.

        size_t a_ld;


        // Leading dimension of the input B matrix. This value must be greater than 0.

        size_t b_ld;


        // When transpose_a == Transpose::kNo, then a_ld must be at least m,

        // otherwise a_ld must be at least k.
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        if( MatATranspose == CLBlastTransposeYes ){

          a_ld = RowA;

        }else{

          a_ld = ColA;

        }


        // When transpose_b == Transpose::kNo, then b_ld must be at least k,

        // otherwise b_ld must be at least n.

        if( MatBTranspose == CLBlastTransposeYes ){

          b_ld = ColA;

        }else{

          b_ld = ColB;

        }


        // The value of c_ld must be at least m.

        const size_t c_ld = ColB;


        // Performs the matrix product C = alpha * A * B + beta * C

        const float alpha = 1.0f;

        const float beta = 0.0f;


        // Call the SGEMM routine.

        CLBlastStatusCode status = CLBlastSgemm(CLBlastLayoutRowMajor,

                                                MatATranspose, MatBTranspose,

                                                RowA, ColB, ColA,

                                                alpha,

                                                clBufferA, 0, a_ld,

                                                clBufferB, 0, b_ld,

                                                beta,

                                                clBufferC, 0, c_ld,

                                                &clQueue, &gemmKernelEvent);


        // Wait for completion

        if (status != CLBlastSuccess){

          LOG(ERROR) << "[CLBlast] Fail with code " << status;

          return CL_FALSE;

        }


        CL_CHECK( clWaitForEvents(1, &gemmKernelEvent) );

        return CL_SUCCESS;

      }


    protected:


      // OpenCL memeory object

      cl_mem clBufferA;

      cl_mem clBufferB;

      cl_mem clBufferC;


      // OpenCL events

      cl_event gemmKernelEvent;

      cl_event writeBufferEvents[2];


  };  // class clBLASTEngine
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namespace functor {


  template <typename Device, typename T>

  struct MatMulCLFunctor {

    // Computes on device "d": out = in0 * in1, where * is matrix

    // multiplication.

    void operator()(

        const Device& d, typename MatMulTypes<T>::out_type out,

        typename MatMulTypes<T>::in_type in0,

        typename MatMulTypes<T>::in_type in1,

        const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair);

  };


  // Partial specialization MatMulFunctor<Device=CPUDevice, T>.

  template <typename T>

  struct MatMulCLFunctor<CPUDevice, T> {

    void operator()(

        const CPUDevice& d, typename MatMulTypes<T>::out_type out,

        typename MatMulTypes<T>::in_type in0,

        typename MatMulTypes<T>::in_type in1,

        const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair) {

      MatMul<CPUDevice>(d, out, in0, in1, dim_pair);

    }

  };


  // Partial specialization MatMulFunctor<Device=CPUDevice, float>

  /*

  Notice that only floating pointing matrix multiplication will be handled by

  OpenCL, other datatype complutation will be handled by Eigen CPU library

  */

  template <>

  struct MatMulCLFunctor<CPUDevice, float> {

    void operator()(

        const CPUDevice& d, typename MatMulTypes<float>::out_type out,

        typename MatMulTypes<float>::in_type in0,

        typename MatMulTypes<float>::in_type in1,

        const Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1>& dim_pair)

      {


      clQualcommFP32Engine c = clQualcommFP32Engine();

      // clQualcommFP16Engine c = clQualcommFP16Engine();

      // clBLASTEngine c = clBLASTEngine();


      // OpenCL host & device side initializaiotn

      CL_CHECK( c.hostInit(in0, in1, out, dim_pair) );


      // debug info

      // c.debug(true);


      // OpenCL memeory object init & memory copy

      CL_CHECK( c.memInit(in0, in1) );


      // GEMM computation
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      CL_CHECK( c.loadFromBinaryCompute() );

      // CL_CHECK( c.clBlastCompute() );


      // OpenCL memory load

      CL_CHECK( c.memLoad(out) );


      // Results

      // c.printMatrix(in0, in1, out);


    }

  };


}  // end namespace functor

}  // end namespace tensorflow


#endif  // MATMUL_CL_FUNCTOR_H_




B. MNIST AI model building Python script  
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# Copyright 2015 The TensorFlow Authors. All Rights Reserved.

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

#     http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

# 
======================================================================
========


"""A very simple MNIST classifier.


See extensive documentation at

https://www.tensorflow.org/get_started/mnist/beginners

"""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function


import argparse

import sys

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data


def main(_):


    # Import data

    mnist = input_data.read_data_sets(FLAGS.mnistDataDir, one_hot=True)


    # Training parameters

    maxEpochs = FLAGS.maxEpochs

    batchSize = FLAGS.batchSize

    testStep = FLAGS.testStep


    # Network parameters

    n_hidden_1 = 50 # 1st layer number of neurons

    n_hidden_2 = 50 # 2nd layer number of neurons

    n_input = 784 # MNIST data input (img shape: 28*28)

    n_classes = 10 # MNIST total classes (0-9 digits)


    # tf Graph input

    X = tf.placeholder(tf.float32, [None, n_input], name="input")

    Y = tf.placeholder(tf.float32, [None, n_classes], name="output")


    # Store layers weight & bias

    weights = {

        'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),




Page !  of !52 85

        'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),

        'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))

    }

    biases = {

        'b1': tf.Variable(tf.random_normal([n_hidden_1])),

        'b2': tf.Variable(tf.random_normal([n_hidden_2])),

        'out': tf.Variable(tf.random_normal([n_classes]))

    }


    # Create model

    def multilayer_perceptron(x):

        # Hidden fully connected layer with `n_hidden_1` neurons

        layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])

        # Hidden fully connected layer with `n_hidden_2` neurons

        layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])

        # Output fully connected layer with a neuron for each class

        out_layer = tf.matmul(layer_2, weights['out']) + biases['out']

        return out_layer


    # Construct model

    logits = multilayer_perceptron(X)


    # Define loss

    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(

        logits=logits, labels=Y))


    # Define optimizer

    with tf.name_scope('adam_optimizer'):

        train_op = tf.train.AdamOptimizer().minimize(loss, name="train")


    # Define accuracy

    prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1))

    accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32), name="test")


    # Create a summary to monitor cross_entropy tensor

    tf.summary.scalar("loss", loss)

    # Create a summary to monitor accuracy tensor

    tf.summary.scalar("accuracy", accuracy)

    # Merge all summaries into a single op

    merged_summary_op = tf.summary.merge_all()


    # Initializing the variables

    init = tf.initialize_variables(tf.all_variables(), name='init')


    with tf.Session() as sess:

        # Session Init

        sess.run(init)


        # Logger Init

        summaryWriter = tf.summary.FileWriter(FLAGS.logDir, graph=sess.graph)


        # Training

        for step in range(maxEpochs):

            # Get MNIST training data
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            batchImage, batchLabel = mnist.train.next_batch(batchSize)


            # Test training model for every testStep

            if step % testStep == 0:

                # Run accuracy op & summary op to get accuracy & training progress

                acc, summary = sess.run([accuracy, merged_summary_op],

                    feed_dict={X: mnist.test.images, Y: mnist.test.labels})


                # Write accuracy to log file

                summaryWriter.add_summary(summary, step)


                # Print accuracy

                print('step %d, training accuracy %f' % (step, acc))


            # Run training op

            train_op.run( feed_dict={ X: batchImage, Y: batchLabel })


        # Write TF model

        tf.train.write_graph(sess.graph_def,

                            './',

                            'mnist_mlp.pb', as_text=False)


if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    parser.add_argument('--mnistDataDir', type=str, default='/tmp/tensorflow/mnist/input_data',

                        help='MNIST data directory')

    parser.add_argument('--logDir', type=str, default='/tmp/tensorflow_logs/mlpnet',

                        help='Training progress data directory')

    parser.add_argument('--batchSize', type=int, default=50,

                        help='Training batch size')

    parser.add_argument('--maxEpochs', type=int, default=10000,

                        help='Maximum training steps')

    parser.add_argument('--testStep', type=int, default=100,

                        help='Test model accuracy for every testStep iterations')

    FLAGS, unparsed = parser.parse_known_args()

    # Program entry

    tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
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# Copyright 2015 The TensorFlow Authors. All Rights Reserved.

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

#     http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

# 
======================================================================
========


"""A deep MNIST classifier using convolutional layers.


See extensive documentation at

https://www.tensorflow.org/get_started/mnist/pros

"""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function


import argparse

import sys

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data


def deepnn(X):

    """deepnn builds the graph for a deep net for classifying digits.


    Args:

    X: an input tensor with the dimensions (N_examples, 784), where 784 is the

    number of pixels in a standard MNIST image.


    Returns:

    A tuple (y, keepProb). y is a tensor of shape (N_examples, 10), with values

    equal to the logits of classifying the digit into one of 10 classes (the

    digits 0-9). keepProb is a scalar placeholder for the probability of

    dropout.

    """

    # Reshape to use within a convolutional neural net.

    # Last dimension is for "features" - there is only one here, since images are

    # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.

    with tf.name_scope('reshape'):

        x_image = tf.reshape(X, [-1, 28, 28, 1])


    # First convolutional layer - maps one grayscale image to 32 feature maps.

    with tf.name_scope('conv1'):

        W_conv1 = weight_variable([5, 5, 1, 32])

        b_conv1 = bias_variable([32])
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        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)


    # Pooling layer - downsamples by 2X.

    with tf.name_scope('pool1'):

        h_pool1 = max_pool_2x2(h_conv1)


    # Second convolutional layer -- maps 32 feature maps to 64.

    with tf.name_scope('conv2'):

        W_conv2 = weight_variable([5, 5, 32, 64])

        b_conv2 = bias_variable([64])

        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)


    # Second pooling layer.

    with tf.name_scope('pool2'):

        h_pool2 = max_pool_2x2(h_conv2)


    # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image

    # is down to 7x7x64 feature maps -- maps this to 1024 features.

    with tf.name_scope('fc1'):

        W_fc1 = weight_variable([7 * 7 * 64, 1024])

        b_fc1 = bias_variable([1024])

        h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])

        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)


    # Dropout - controls the complexity of the model, prevents co-adaptation of

    # features.

    with tf.name_scope('Dropout'):

        keepProb = tf.placeholder(tf.float32)

        h_fc1_drop = tf.nn.dropout(h_fc1, keepProb)


    # Map the 1024 features to 10 classes, one for each digit

    with tf.name_scope('fc2'):

        W_fc2 = weight_variable([1024, 10])

        b_fc2 = bias_variable([10])

        Yconv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2


    return Yconv, keepProb


def conv2d(X, W):

    """conv2d returns a 2d convolution layer with full stride."""

    return tf.nn.conv2d(X, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(X):

    """max_pool_2x2 downsamples a feature map by 2X."""

    return tf.nn.max_pool(X, ksize=[1, 2, 2, 1],

                        strides=[1, 2, 2, 1], padding='SAME')


def weight_variable(shape):

    """weight_variable generates a weight variable of a given shape."""

    initial = tf.truncated_normal(shape, stddev=0.1)

    return tf.Variable(initial)
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def bias_variable(shape):

    """bias_variable generates a bias variable of a given shape."""

    initial = tf.constant(0.1, shape=shape)

    return tf.Variable(initial)


def main(_):


    # Import data

    mnist = input_data.read_data_sets(FLAGS.mnistDataDir, one_hot=True)


    # Training parameters

    maxEpochs = FLAGS.maxEpochs

    batchSize = FLAGS.batchSize

    testStep = FLAGS.testStep


    # Network parameters

    n_input = 784 # MNIST data input (img shape: 28*28)

    n_classes = 10 # MNIST total classes (0-9 digits)


    # Create the model

    X = tf.placeholder(tf.float32, [None, n_input], name="input")

    Y = tf.placeholder(tf.float32, [None, n_classes], name="output")


    # Build the graph for the deep net

    Yconv, keepProb = deepnn(X)


    # Define loss

    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(

        logits=Yconv, labels=Y))


    # Define optimizer

    with tf.name_scope('adam_optimizer'):

        train_op = tf.train.AdamOptimizer().minimize(loss, name="train")


    # Define accuracy

    prediction = tf.equal(tf.argmax(Yconv, 1), tf.argmax(Y, 1))

    accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32), name="test")


    # Create a summary to monitor cross_entropy tensor

    tf.summary.scalar("loss", loss)

    # Create a summary to monitor accuracy tensor

    tf.summary.scalar("accuracy", accuracy)

    # Merge all summaries into a single op

    merged_summary_op = tf.summary.merge_all()


    # Initializing the variables

    init = tf.initialize_variables(tf.all_variables(), name='init')


    with tf.Session() as sess:

        # Session Init

        sess.run(init)
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        # Logger Init

        summaryWriter = tf.summary.FileWriter(FLAGS.logDir, graph=sess.graph)


        # Training

        for step in range( maxEpochs ):

            # Get MNIST training data

            batchImage, batchLabel = mnist.train.next_batch(batchSize)


            # Test training model for every testStep

            if step % testStep == 0:

                # Run accuracy op & summary op to get accuracy & training progress

                acc, summary = sess.run( [ accuracy, merged_summary_op ], \

                    feed_dict={ X: mnist.test.images, Y: mnist.test.labels, keepProb: 1.0})


                # Write accuracy to log file

                summaryWriter.add_summary(summary, step)


                # Print accuracy

                print('step %d, training accuracy %f' % (step, acc))


            # Run training op

            train_op.run(feed_dict={X: batchImage, Y: batchLabel, keepProb: 0.5})


        # Write TF model

        tf.train.write_graph(sess.graph_def,

                            './',

                            'mnist_dnn.pb', as_text=False)


if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    parser.add_argument('--mnistDataDir', type=str, default='/tmp/tensorflow/mnist/input_data',

                        help='MNIST data directory')

    parser.add_argument('--logDir', type=str, default='/tmp/tensorflow_logs/deepnet',

                        help='Training progress data directory')

    parser.add_argument('--batchSize', type=int, default=50,

                        help='Training batch size')

    parser.add_argument('--maxEpochs', type=int, default=10000,

                        help='Maximum training steps')

    parser.add_argument('--testStep', type=int, default=100,

                        help='Test model accuracy for every testStep iterations')

    FLAGS, unparsed = parser.parse_known_args()

    # Program entry

    tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)




C. MNIST pure trainer program source code  
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# Description:
#   TensorFlow C++ training example for MNIST dataset

package(
    default_visibility = ["//tensorflow:internal"],
)

licenses(["notice"])  # Apache 2.0

exports_files(["LICENSE"])

load(
    "//tensorflow:tensorflow.bzl",
    "tf_copts",
)

ANDROID_C_OPTS = tf_copts() + [
    "-ffunction-sections",
    "-fdata-sections",
    "-fPIE",
    "-pie",
    "-fexceptions",
]

ANDROID_LINK_OPTS = [
    "-fPIE",
    "-pie",
    "-landroid",
    "-latomic",
    "-ldl",
    "-llog",
    "-lm",
    "-z defs",
    "-s",
    "-Wl,--gc-sections",
    "-fuse-ld=gold",
]

cc_library(
    name = "mnistReader",
    srcs = [
        "mnistReader.cc",
    ],
    hdrs = [
        "mnistReader.h",
    ],
    deps = [
        "//external:libmnist",
        "//tensorflow/core:android_tensorflow_lib",
    ],
)

cc_library(
    name = "tf_runner_lib",
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    srcs = [
        "tfRunner.cc",
    ],
    hdrs = [
        "tfRunner.h",
    ],
    deps = [
        "//tensorflow/cc:cc_ops",
        "//tensorflow/core:android_tensorflow_lib",
    ],
)

cc_binary(
  name = "train_and_test_mnist",
  srcs = [
      "train_and_test.cc",
      "util.h",
      "tfRunner.h",
      "tfRunner.cc",
  ],
  copts = ANDROID_C_OPTS,
  linkopts = ANDROID_LINK_OPTS,
  deps = [
      "//tensorflow/cc:cc_ops",
      "//tensorflow/core:android_tensorflow_lib",
      ":mnistReader",
      ":tf_runner_lib",
      "//external:libTFlogger",
  ],
)

cc_binary(
  name = "train_mnist",
  srcs = [
      "train_mnist.cc",
      "util.h",
      "tfRunner.h",
      "tfRunner.cc",
  ],
  copts = ANDROID_C_OPTS,
  linkopts = ANDROID_LINK_OPTS,
  deps = [
      "//tensorflow/cc:cc_ops",
      "//tensorflow/core:android_tensorflow_lib",
      ":mnistReader",
      ":tf_runner_lib",
  ],
)
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/*

By Cheng Wei on 2018/Jan/24

======================================================================
========*/

// A simple program trainging a MNIST TF model using TF C++ API


#include <vector>

#include <chrono>


#include "tensorflow/core/framework/graph.pb.h"

#include "tensorflow/core/framework/tensor.h"

#include "tensorflow/core/graph/default_device.h"

#include "tensorflow/core/graph/graph_def_builder.h"

#include "tensorflow/core/lib/core/errors.h"

#include "tensorflow/core/lib/core/stringpiece.h"

#include "tensorflow/core/lib/core/threadpool.h"

#include "tensorflow/core/lib/io/path.h"

#include "tensorflow/core/lib/strings/stringprintf.h"

#include "tensorflow/core/platform/env.h"

#include "tensorflow/core/platform/init_main.h"

#include "tensorflow/core/platform/logging.h"

#include "tensorflow/core/platform/types.h"

#include "tensorflow/core/public/session.h"

#include "tensorflow/core/util/command_line_flags.h"


#include "tfRunner.h"

#include "util.h"

#include "mnistReader.h"


// These are all common classes it's handy to reference with no namespace.

using tensorflow::Flag;

using tensorflow::Tensor;

using tensorflow::Status;

using tensorflow::string;

using tensorflow::int32;

using namespace tensorflow;

using namespace std;


int main(int argc, char* argv[]) {


  string root_dir         = "/data/local/tmp/";

  string graphName        = "mnist_mlp.pb";

  string mnistDir         = root_dir + "MNIST_data/";

  string inputOpsName     = "input";

  string outputOpsName    = "output";

  string accuOpsName      = "test";

  string trainOpsName     = "adam_optimizer/train";

  string dropoutOpsName   = "Dropout/Placeholder";

  int32  input_width      = 28;

  int32  input_height     = 28;

  int32  batchSize        = 50;

  int32  maxSteps         = 1000000;

  float  iteration        = 1.0f;
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  vector<float> dropProb  = { 0.5 } ;


  // Start the timer

  auto start_time = std::chrono::high_resolution_clock::now();


  vector<Flag> flag_list = {

      Flag("root_dir",      &root_dir,      "Binary Root Directory"),

      Flag("graphName",     &graphName,     "Graph To Be Executed"),

      Flag("mnistDir",      &mnistDir,      "MNIST Dataset Directory"),

      Flag("inputOpsName",  &inputOpsName,  "Input Ops Name"),

      Flag("outputOpsName", &outputOpsName, "Output Ops Name"),

      Flag("accuOpsName",   &accuOpsName,   "Cost Ops Name"),

      Flag("trainOpsName",  &trainOpsName,  "Train Ops Name"),

      Flag("dropoutOpsName",&dropoutOpsName,"Dropout Ops Name"),

      Flag("batchSize",     &batchSize,     "Training & Testing Batch Size"),

      Flag("maxSteps",      &maxSteps,      "Maximum Number of Taining Steps"),

      Flag("iteration",     &iteration,     "Number of Iteration to Traing the Whole Dataset"),

      Flag("dropProb",      &dropProb[0],   "Drop-out Layer (if any) Probability"),

  };


  string usage = Flags::Usage(argv[0], flag_list);

  const bool parse_result = Flags::Parse(&argc, argv, flag_list);

  if (!parse_result) {

    LOG(ERROR) << usage;

    return -1;

  }


  // We need to call this to set up global state for TensorFlow.

  port::InitMain(argv[0], &argc, &argv);

  if (argc > 1) {

    LOG(ERROR) << "Unknown argument " << argv[1] << "\n" << usage;

    return -1;

  }


  LOG(INFO) << "[Root directory] = " << root_dir ;


  // Prepare MNIST dataset

  LOG(INFO) << "[MNIST Dataset Directory] = " << mnistDir ;


  mnistReader mnist = mnistReader(mnistDir);


  LOG(INFO) << "[MNIST Dataset] Num of Training Images = " << mnist.getTrainingDataSize();

  LOG(INFO) << "[MNIST Dataset] Num of Training Labels = " << mnist.getTrainingDataSize();

  LOG(INFO) << "[MNIST Dataset] Num of Test     Images = " << mnist.getTestingDataSize();

  LOG(INFO) << "[MNIST Dataset] Num of Test     Labels = " << mnist.getTestingDataSize();

  LOG(INFO) << "[MNIST Dataset] Input Image Size       = " << mnist.getImgSize();


  input_width  = mnist.getImgSize();

  input_height = mnist.getImgSize();


  // Load TF model.

  unique_ptr<Session> session;

  string graph_path = io::JoinPath(root_dir, graphName);

  Status load_graph_status = LoadGraph(graph_path, &session);
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  if (!load_graph_status.ok()) {

    LOG(ERROR) << load_graph_status;

    return -1;

  }

  LOG(INFO) << "[TF Model File Loaded From Directory] = " << graph_path ;


  tfRunner runner = tfRunner("init", trainOpsName, accuOpsName, graphName);


  runner.sessInit(session);


  runner.tensorInit(batchSize, input_width*input_height);


  for( auto beginIdx = 0 ; beginIdx < mnist.getTrainingDataSize()*iteration - batchSize;

    beginIdx = beginIdx + batchSize )

  {


    LOG(INFO) << beginIdx << " trained.";


    // If the number of training steps > maxSteps then stop training

    if ( beginIdx > maxSteps ){ break; }


    // image vector with dimension { 1, batchSize x input_width x input_height }

    vector<float> batchTrainImgFloatVec;

    // label vector with dimension { 1, batchSize }

    vector<float> batchTrainLabelFloatVec;


    mnist.getTrainingBatch(beginIdx, batchSize, &batchTrainImgFloatVec, 
&batchTrainLabelFloatVec);


    runner.copyToTensor(batchTrainImgFloatVec, batchTrainLabelFloatVec, dropProb);


    runner.sessionTrain(session, inputOpsName, outputOpsName, dropoutOpsName);


  } // End of Training Batch Loop


  auto elapsed_time = std::chrono::high_resolution_clock::now() - start_time;

  auto time_s = std::chrono::duration<double>(elapsed_time).count();


  LOG(INFO) << "Training " << graphName << " takes " << time_s << " sec";


  vector<double> avg_accu;


  batchSize = 100;


  for( auto beginIdx = 0 ; beginIdx < mnist.getTestingDataSize() - batchSize;

    beginIdx = beginIdx + batchSize )

  { // Testing Batch Loop


    LOG(INFO) << beginIdx << " tested.";


    // image vector with dimension { 1, batchSize x input_width x input_height }

    vector<float> batchTestImgFloatVec;

    // label vector with dimension { 1, batchSize }

    vector<float> batchTestLabelFloatVec;
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    mnist.getTestingBatch(beginIdx, batchSize, &batchTestImgFloatVec, 
&batchTestLabelFloatVec);


    // No drop out layer when testing

    dropProb[0] = 1.0f;


    runner.copyToTensor(batchTestImgFloatVec, batchTestLabelFloatVec, dropProb);


    double acc = runner.sessionTest(session, inputOpsName, outputOpsName, 
dropoutOpsName);


    avg_accu.push_back( acc );

    LOG(INFO) << "Accuracy " << acc * 100 << "\%";


  } // End of Testing Batch Loop


  auto acc = 100 * accumulate( avg_accu.begin(), avg_accu.end(), 0.0f) / avg_accu.size();


  LOG(INFO) << "Overall testing accuracy " << acc << "\%";


} // End of main




D. MNIST training logger program  source code  
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/*

By Cheng Wei on 2018/Jan/24

======================================================================
========*/

// A simple program trainging a MNIST TF model using TF C++ API


#include <vector>

#include <chrono>


#include "tensorflow/core/framework/graph.pb.h"

#include "tensorflow/core/framework/tensor.h"

#include "tensorflow/core/graph/default_device.h"

#include "tensorflow/core/graph/graph_def_builder.h"

#include "tensorflow/core/lib/core/errors.h"

#include "tensorflow/core/lib/core/stringpiece.h"

#include "tensorflow/core/lib/core/threadpool.h"

#include "tensorflow/core/lib/io/path.h"

#include "tensorflow/core/lib/strings/stringprintf.h"

#include "tensorflow/core/platform/env.h"

#include "tensorflow/core/platform/init_main.h"

#include "tensorflow/core/platform/logging.h"

#include "tensorflow/core/platform/types.h"

#include "tensorflow/core/public/session.h"

#include "tensorflow/core/util/command_line_flags.h"


#include "tfRunner.h"

#include "util.h"

#include "mnistReader.h"

#include "tensorboard_logger.h"


// These are all common classes it's handy to reference with no namespace.

using tensorflow::Flag;

using tensorflow::Tensor;

using tensorflow::Status;

using tensorflow::string;

using tensorflow::int32;

using namespace tensorflow;

using namespace std;


int main(int argc, char* argv[]) {


  string root_dir         = "/data/local/tmp/";

  string graphName        = "mnist_mlp.pb";

  string mnistDir         = root_dir + "MNIST_data/";

  string inputOpsName     = "input";

  string outputOpsName    = "output";

  string accuOpsName      = "test";

  string trainOpsName     = "adam_optimizer/train";

  string dropoutOpsName   = "Dropout/Placeholder";

  int32  input_width      = 28;

  int32  input_height     = 28;

  int32  batchSize        = 50;

  int32  maxSteps         = 1000000;
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  float  iteration        = 1.0f;

  vector<float> dropProb  = { 0.5 } ;


  int timeStamp = std::chrono::duration_cast<std::chrono::milliseconds>

  ( std::chrono::system_clock::now().time_since_epoch() ).count();

  string logFileName      = root_dir + "events.out.tfevents." + to_string(timeStamp)

     + ".wei.local";


  vector<Flag> flag_list = {

      Flag("root_dir",      &root_dir,      "Binary Root Directory"),

      Flag("graphName",     &graphName,     "Graph To Be Executed"),

      Flag("mnistDir",      &mnistDir,      "MNIST Dataset Directory"),

      Flag("inputOpsName",  &inputOpsName,  "Input Ops Name"),

      Flag("outputOpsName", &outputOpsName, "Output Ops Name"),

      Flag("accuOpsName",   &accuOpsName,   "Cost Ops Name"),

      Flag("trainOpsName",  &trainOpsName,  "Train Ops Name"),

      Flag("dropoutOpsName",&dropoutOpsName,"Dropout Ops Name"),

      Flag("batchSize",     &batchSize,     "Training & Testing Batch Size"),

      Flag("maxSteps",      &maxSteps,      "Maximum Number of Taining Steps"),

      Flag("iteration",     &iteration,     "Number of Iteration to Traing the Whole Dataset"),

      Flag("dropProb",      &dropProb[0],   "Drop-out Layer (if any) Probability"),

  };


  string usage = Flags::Usage(argv[0], flag_list);

  const bool parse_result = Flags::Parse(&argc, argv, flag_list);

  if (!parse_result) {

    LOG(ERROR) << usage;

    return -1;

  }


  // We need to call this to set up global state for TensorFlow.

  port::InitMain(argv[0], &argc, &argv);

  if (argc > 1) {

    LOG(ERROR) << "Unknown argument " << argv[1] << "\n" << usage;

    return -1;

  }


  LOG(INFO) << "[Root directory] = " << root_dir ;


  // Prepare MNIST dataset

  LOG(INFO) << "[MNIST Dataset Directory] = " << mnistDir ;


  mnistReader mnist = mnistReader(mnistDir);


  LOG(INFO) << "[MNIST Dataset] Num of Training Images = " << mnist.getTrainingDataSize();

  LOG(INFO) << "[MNIST Dataset] Num of Training Labels = " << mnist.getTrainingDataSize();

  LOG(INFO) << "[MNIST Dataset] Num of Test     Images = " << mnist.getTestingDataSize();

  LOG(INFO) << "[MNIST Dataset] Num of Test     Labels = " << mnist.getTestingDataSize();

  LOG(INFO) << "[MNIST Dataset] Input Image Size       = " << mnist.getImgSize();


  input_width  = mnist.getImgSize();

  input_height = mnist.getImgSize();


  TensorBoardLogger logger( logFileName.c_str() );
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  // Load TF model.

  unique_ptr<Session> session;

  string graph_path = io::JoinPath(root_dir, graphName);

  Status load_graph_status = LoadGraph(graph_path, &session);

  if (!load_graph_status.ok()) {

    LOG(ERROR) << load_graph_status;

    return -1;

  }

  LOG(INFO) << "[TF Model File Loaded From Directory] = " << graph_path ;


  tfRunner runner = tfRunner("init", trainOpsName, accuOpsName, graphName);


  runner.sessInit(session);


  runner.tensorInit(batchSize, input_width*input_height);


  for( auto beginIdx = 0 ; beginIdx < mnist.getTrainingDataSize()*iteration - batchSize;

    beginIdx = beginIdx + batchSize )

  {


    LOG(INFO) << beginIdx << " trained.";


    // If the number of training steps > maxSteps then stop training

    if ( beginIdx > maxSteps ){ break; }


    // image vector with dimension { 1, batchSize x input_width x input_height }

    vector<float> batchTrainImgFloatVec;

    // label vector with dimension { 1, batchSize }

    vector<float> batchTrainLabelFloatVec;


    mnist.getTrainingBatch(beginIdx, batchSize, &batchTrainImgFloatVec, 
&batchTrainLabelFloatVec);


    runner.copyToTensor(batchTrainImgFloatVec, batchTrainLabelFloatVec, dropProb);


    runner.sessionTrain(session, inputOpsName, outputOpsName, dropoutOpsName);


    // Do overall testing for each 1000 data trained

    if( beginIdx % (5*batchSize) == 0 )

    {

      vector<double> avg_accu;


      for( auto beginIdx = 0 ; beginIdx < mnist.getTestingDataSize() - batchSize;

        beginIdx = beginIdx + batchSize )

      { // Testing Batch Loop


        // LOG(INFO) << beginIdx << " tested.";


        // image vector with dimension { 1, batchSize x input_width x input_height }

        vector<float> batchTestImgFloatVec;

        // label vector with dimension { 1, batchSize }

        vector<float> batchTestLabelFloatVec;
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        mnist.getTestingBatch(beginIdx, batchSize, &batchTestImgFloatVec, 
&batchTestLabelFloatVec);


        // No drop out layer when testing

        dropProb[0] = 1.0f;


        runner.copyToTensor(batchTestImgFloatVec, batchTestLabelFloatVec, dropProb);


        double acc = runner.sessionTest(session, inputOpsName, outputOpsName, 
dropoutOpsName);


        avg_accu.push_back( acc );

        // LOG(INFO) << "Accuracy " << acc * 100 << "\%";


      } // End of Testing Batch Loop


      auto acc = 100 * accumulate( avg_accu.begin(), avg_accu.end(), 0.0f) / avg_accu.size();


      LOG(INFO) << "Overall testing accuracy " << acc << "\%";


      logger.add_scalar("accurarcy", beginIdx, acc);

    }


  } // End of Training Batch Loop


} // End of main




E. OpenCL compiler source code  
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#include "CL/cl.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>

using namespace std;

///
//  Attempt to create the program object from a cached binary.
///
cl_program CreateProgramFromBinary(cl_context context, cl_device_id 
device, const char* fileName)
{
    FILE *fp = fopen(fileName, "rb");
    if (fp == NULL)
    {
        return NULL;
    }

    // Determine the size of the binary
    size_t binarySize;
    fseek(fp, 0, SEEK_END);
    binarySize = ftell(fp);
    rewind(fp);

    unsigned char *programBinary = new unsigned char[binarySize];
    fread(programBinary, 1, binarySize, fp);
    fclose(fp);

    cl_int errNum = 0;
    cl_program program;
    cl_int binaryStatus;

    program = clCreateProgramWithBinary(context,
                                        1,
                                        &device,
                                        &binarySize,
                                        (const unsigned 
char**)&programBinary,
                                        &binaryStatus,
                                        &errNum);
    delete [] programBinary;
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error loading program binary." << std::endl;
        return NULL;
    }

    if (binaryStatus != CL_SUCCESS)
    {
        std::cerr << "Invalid binary for device" << std::endl;
        return NULL;
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    }

    errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        // Determine the reason for the error
        char buildLog[16384];
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
                              sizeof(buildLog), buildLog, NULL);

        std::cerr << "Error in program: " << std::endl;
        std::cerr << buildLog << std::endl;
        clReleaseProgram(program);
        return NULL;
    }

    return program;
}

///
// Read in binary files
///
int read_file(char **output, size_t *size, const char *name) {
  FILE *fp = fopen(name, "rb");
  if (!fp) {
    return -1;
  }

  fseek(fp, 0, SEEK_END);
  *size = ftell(fp);
  fseek(fp, 0, SEEK_SET);

  *output = (char *)malloc(*size);
  if (!*output) {
    fclose(fp);
    return -1;
  }

  fread(*output, *size, 1, fp);
  fclose(fp);
  return 0;
}

///
// Write compiled files
///
int write_file(const char *name, const unsigned char *content, 
size_t size) {
  FILE *fp = fopen(name, "wb+");
  if (!fp) {
    return -1;
  }
  fwrite(content, size, 1, fp);
  fclose(fp);
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  return 0;
}

// OpenCL helper functions
cl_int get_platform_list(cl_platform_id **platforms_out,
                         cl_uint *num_platforms_out) {
  cl_int err;

  // Read the number of platforms
  cl_uint num_platforms;
  err = clGetPlatformIDs(0, NULL, &num_platforms);
  if (err != CL_SUCCESS) {
    return err;
  }
  if (num_platforms == 0) {
    return CL_INVALID_VALUE;
  }

  // Allocate the array of cl_platform_id
  cl_platform_id *platforms =
    (cl_platform_id *)malloc(sizeof(cl_platform_id) * 
num_platforms);
  if (!platforms) {
    return CL_OUT_OF_HOST_MEMORY;
  }

  // Get the result
  err = clGetPlatformIDs(num_platforms, platforms, NULL);
  if (err != CL_SUCCESS) {
    free(platforms);
    return err;
  }

  *platforms_out = platforms;
  *num_platforms_out = num_platforms;
  return CL_SUCCESS;
}

void free_platform_list(cl_platform_id *platforms, cl_uint 
num_platforms) {
  free(platforms);
}

char *get_platform_info(cl_platform_id platform, cl_platform_info 
param) {
  cl_int err;

  // Read the size of the buffer for platform name
  size_t buf_size;
  err = clGetPlatformInfo(platform, param, 0, NULL, &buf_size);
  if (err != CL_SUCCESS) {
    return NULL;
  }
  if (buf_size == 0) {
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    return NULL;
  }

  // Allocate the buffer for platform name
  char *buf = (char *)malloc(buf_size);
  if (!buf) {
    return NULL;
  }

  // Read the platform name
  err = clGetPlatformInfo(platform, param, buf_size, buf, NULL);
  if (err != CL_SUCCESS) {
    free(buf);
    return NULL;
  }

  return buf;
}

cl_int get_device_list(cl_device_id **devices_out, cl_uint 
*num_devices_out,
                       cl_platform_id platform) {
  cl_int err;

  // Read the number of devices of the given platform
  cl_uint num_devices;
  err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL,
                       &num_devices);
  if (err != CL_SUCCESS) {
    return err;
  }

  // Allocate the array of cl_device_id
  cl_device_id *devices =
    (cl_device_id *)malloc(sizeof(cl_device_id) * num_devices);
  if (!devices) {
    return CL_OUT_OF_HOST_MEMORY;
  }

  // Read the result
  err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices,
                       devices, NULL);
  if (err != CL_SUCCESS) {
    free(devices);
    return err;
  }

  *devices_out = devices;
  *num_devices_out = num_devices;
  return CL_SUCCESS;
}

void free_device_list(cl_device_id *devices, cl_uint num_devices) {
  cl_uint i;
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  for (i = 0; i < num_devices; ++i) {
    clReleaseDevice(devices[i]);
  }
  free(devices);
}

cl_int write_binaries(cl_program program, unsigned num_devices,
                      cl_uint platform_idx, const char * 
outputBinaryName ) {
  unsigned i;
  cl_int err = CL_SUCCESS;
  size_t *binaries_size = NULL;
  unsigned char **binaries_ptr = NULL;

  // Read the binaries size
  size_t binaries_size_alloc_size = sizeof(size_t) * num_devices;
  binaries_size = (size_t *)malloc(binaries_size_alloc_size);
  if (!binaries_size) {
    err = CL_OUT_OF_HOST_MEMORY;
    return err;
  }

  err = clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES,
                         binaries_size_alloc_size, binaries_size, 
NULL);
  if (err != CL_SUCCESS) {
    return err;
  }

  // Read the binaries
  size_t binaries_ptr_alloc_size = sizeof(unsigned char *) * 
num_devices;
  binaries_ptr = (unsigned char **)malloc(binaries_ptr_alloc_size);
  if (!binaries_ptr) {
    err = CL_OUT_OF_HOST_MEMORY;
    return err;
  }
  memset(binaries_ptr, 0, binaries_ptr_alloc_size);
  for (i = 0; i < num_devices; ++i) {
    binaries_ptr[i] = (unsigned char *)malloc(binaries_size[i]);
    if (!binaries_ptr[i]) {
      err = CL_OUT_OF_HOST_MEMORY;
      return err;
    }
  }

  err = clGetProgramInfo(program, CL_PROGRAM_BINARIES, 
binaries_ptr_alloc_size,
                         binaries_ptr, NULL);
  if (err != CL_SUCCESS) {
    return err;
  }

  // Write the binaries to file
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  for (i = 0; i < num_devices; ++i) {
    // Write the binary to the output file
    write_file(outputBinaryName, binaries_ptr[i], binaries_size[i]);
  }

  return err;
}

cl_int compile_program(cl_uint *num_devices_out, const char *src,
                       size_t src_size, cl_platform_id platform,
                       cl_uint platform_idx, const char * 
outputBinaryName ) {
  cl_int err = CL_SUCCESS;

  // Get the device list
  cl_device_id* devices = NULL;
  cl_uint num_devices = 0;
  get_device_list(&devices, &num_devices, platform);
  *num_devices_out = num_devices;

  // Create context
  cl_context_properties ctx_properties[] = {
    CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0
  };

  cl_context ctx = clCreateContext(ctx_properties, num_devices, 
devices, NULL,
                                   NULL, &err);
  if (err != CL_SUCCESS) {
    return err;
  }

  // Create program
  cl_program program = clCreateProgramWithSource(ctx, 1, &src, 
&src_size, &err);
  if (err != CL_SUCCESS) {
    return err;
  }

  // Compile program
  err = clBuildProgram(program, num_devices, devices, NULL, NULL, 
NULL);
  if (err != CL_SUCCESS)
  {
      // Determine the reason for the error
      char buildLog[16384];
      clGetProgramBuildInfo(program, devices[0], 
CL_PROGRAM_BUILD_LOG,
                            sizeof(buildLog), buildLog, NULL);

      std::cerr << "Error in program: " << std::endl;
      std::cerr << buildLog << std::endl;

      return err;
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  }

  // Write the binaries
  write_binaries(program, num_devices, platform_idx, 
outputBinaryName);

  return err;
}

void compile_all(const char *src, size_t src_size, const char * 
outputBinaryName ) {
  cl_uint i;

  // Get the platform list
  cl_platform_id *platforms = NULL;
  cl_uint num_platforms = 0;
  if (get_platform_list(&platforms, &num_platforms) != CL_SUCCESS) {
    return;
  }

  // For each platform compile binaries for each devices
  for (i = 0; i < num_platforms; ++i) {
    // Compile for each devices
    cl_uint num_devices = 0;
    cl_int err = compile_program(&num_devices, src, src_size, 
platforms[i], i, outputBinaryName );

    // Print the result
    char *platform_name = get_platform_info(platforms[i], 
CL_PLATFORM_NAME);
    printf("PLATFORM [%s]  -->  %s (%u)\n",
           (platform_name ? platform_name : ""),
           ((err == CL_SUCCESS) ? "SUCCESS" : "FAILURE"),
           (unsigned)num_devices);
    if( err ){
      cerr << "[Error code]" << err << endl;
      exit(-1);
    }
    fflush(stdout);
    free(platform_name);
  }

  // Free the platform list
  free_platform_list(platforms, num_platforms);
}

int main(int argc, char **argv) {
  // Check the command line option
  if (argc < 3) {
    cerr << "USAGE: opencl-compiler [SOURCE] [OUTPUT NAME]\n";
    exit(EXIT_FAILURE);
  }

  const char * filename = argv[1];
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  const char * output_fn = argv[2];

  // Read the source file
  char *src = NULL;
  size_t src_size = 0;
  if (read_file(&src, &src_size, filename) != 0) {
    cerr << "ERROR: Failed to read:" << filename << endl; return -1;
  }

  // Compile binaries for each platforms and devices
  compile_all(src, src_size, output_fn);

  // Free the source file
  free(src);

  // Get the platform list
  cl_int err = CL_SUCCESS;
  cl_platform_id *platforms = NULL;
  cl_uint num_platforms = 0;
  if (get_platform_list(&platforms, &num_platforms) != CL_SUCCESS) {
    cerr << "ERROR: Failed to get_platform_list" << endl; return -1;
  }

  // Get the device list from the first platform
  cl_device_id* devices = NULL;
  cl_uint num_devices = 0;
  get_device_list(&devices, &num_devices, platforms[0]);

  cl_context ctx = clCreateContext(NULL, num_devices, devices, NULL,
                                   NULL, &err);
  if (err != CL_SUCCESS) {
    cerr << "fail to create contenxt" << endl; return -1;
  }

  // Create a new program
  cl_program cl_progLoadedFromBinary;

  // Load the kernel binary
  cl_progLoadedFromBinary = CreateProgramFromBinary(ctx, *devices, 
output_fn);
  if ( !cl_progLoadedFromBinary ){
    cerr << "Fail to create program" << endl; return -1;
  }else{
    cout << "Program created from binary file " << output_fn << 
endl;
  }

  return 0;
}
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#include <sys/time.h>
#include <time.h>
#include <random>

#include "tensorflow/core/public/session.h"
#include "tensorflow/core/graph/default_device.h"

using namespace tensorflow;
using namespace std;

int main(int argc, char* argv[]) {

    if( argc != 8 ){
      cerr << "expected 2 arguments [rowA] [colA] [rowB] [colB] 
[TransA] [TransB] [Num of Runs]" << endl;
      exit(1);
    }

    // Random generator
    std::random_device rd;
    std::default_random_engine gen = 
std::default_random_engine(rd());
    std::normal_distribution<> dis{0,5};

    // Timers
    struct timeval start, end;

    string graph_definition = "matmul.pb";
    Session* session;
    GraphDef graph_def;
    SessionOptions opts;
    vector<Tensor> outputs; // Store outputs
    TF_CHECK_OK(ReadBinaryProto(Env::Default(), graph_definition, 
&graph_def));

    // Set graph options
    graph::SetDefaultDevice("/cpu:0", &graph_def);

    // create a new session
    TF_CHECK_OK(NewSession(opts, &session));

    // Load graph into session
    TF_CHECK_OK(session->Create(graph_def));

    // Matrix transpose option before matrix multiplication
    int transA = atoi( argv[5] );
    int transB = atoi( argv[6] );

    // Matrix size
    int rowA = atoi( argv[1] );
    int colA = atoi( argv[2] );
    int rowB = atoi( argv[3] );
    int colB = atoi( argv[4] );
    int rowC = (transA == 1) ? colA : rowA;
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    int colC = (transB == 1) ? rowB : colB;

    // Number of runs
    int num_runs = atoi( argv[7] );

    // Tensorflow Tensor initializaiotn
    Tensor TensorA (DT_FLOAT, TensorShape({ rowA, colA }));
    Tensor TensorB (DT_FLOAT, TensorShape({ rowB, colB }));
    float * TensorC = (float*)malloc( rowC * colC * sizeof(float) );

    // Matrix initializaiotn
    auto TensorAMatrix = TensorA.tensor<float, 2>();
    for( int i = 0 ; i < rowA ; i ++ ){
      for( auto j = 0 ; j < colA ; j ++ ){
        TensorAMatrix(i, j) = dis(gen);
      }
    }
    auto TensorBMatrix = TensorB.tensor<float, 2>();
    for( int i = 0 ; i < rowB ; i ++ ){
      for( auto j = 0 ; j < colB ; j ++ ){
        TensorBMatrix(i, j) = dis(gen);
      }
    }

    LOG(INFO) << ">>> [TF] Starting " << num_runs << " TF MatMul 
runs...";
    // Start timer
    gettimeofday(&start, NULL);

    for (int r=0; r<num_runs; r++) {
      // Compute matrix multiplaction result using TF
      TF_CHECK_OK(session->Run({{"x", TensorA}, {"y", TensorB}}, 
{"matmul"},
        {}, &outputs)); // Get cost
    }
    auto tf_res = outputs[0].matrix<float>();
    // cout << "TF result: \n" << tf_res << endl;

    // Stop timer
    gettimeofday(&end, NULL);

    double interval = ( end.tv_sec * 1.0e6 + end.tv_usec ) -
      ( start.tv_sec * 1.0e6 + start.tv_usec );
    double runtime = interval / num_runs;
    std::cerr << ">>> Done: took " << runtime << " us per run";
    std::cout << runtime << endl;

    // Compute matrix multiplaction result using Eigen
    auto TensorAEigenMap = Eigen::Map<Eigen::Matrix<
      float,           /* scalar element type */
      Eigen::Dynamic,  /* num_rows is a run-time value */
      Eigen::Dynamic,  /* num_cols is a run-time value */
      Eigen::RowMajor  /* tensorflow::Tensor is always row-major */
>>(
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        TensorA.flat<float>().data(),  /* ptr to data */
        rowA,           /* num_rows */
        colA            /* num_cols */);

    auto TensorBEigenMap = Eigen::Map<Eigen::Matrix<
      float,           /* scalar element type */
      Eigen::Dynamic,  /* num_rows is a run-time value */
      Eigen::Dynamic,  /* num_cols is a run-time value */
      Eigen::RowMajor  /* tensorflow::Tensor is always row-major */
>>(
        TensorB.flat<float>().data(),  /* ptr to data */
        rowB,           /* num_rows */
        colB            /* num_cols */);

    auto eigen_res = Eigen::Map<Eigen::Matrix<
      float,           /* scalar element type */
      Eigen::Dynamic,  /* num_rows is a run-time value */
      Eigen::Dynamic,  /* num_cols is a run-time value */
      Eigen::RowMajor  /* tensorflow::Tensor is always row-major */
>>(
        TensorC,  /* ptr to data */
        rowC,           /* num_rows */
        colC            /* num_cols */);

    cout << ">>> [Eigen] Starting " << num_runs << " Eigen MatMul 
runs...";
    // Start timer
    gettimeofday(&start, NULL);

    if( transA == 1 && transB == 1 ){
      eigen_res = ( TensorAEigenMap.transpose() * 
TensorBEigenMap.transpose() );
    }else if( transA == 1 && transB == 0 ){
      eigen_res = ( TensorAEigenMap.transpose() * TensorBEigenMap );
    }else if( transA == 0 && transB == 1 ){
      eigen_res = ( TensorAEigenMap * TensorBEigenMap.transpose() );
    }else if( transA == 0 && transB == 0 ){
      eigen_res = ( TensorAEigenMap * TensorBEigenMap );
    }

    // cout << "Eigen result: \n" << eigen_res << endl ;

    // Stop timer
    gettimeofday(&end, NULL);
    interval = ( end.tv_sec * 1.0e6 + end.tv_usec ) -
      ( start.tv_sec * 1.0e6 + start.tv_usec );
    runtime = interval;
    std::cout << ">>> Done: took " << runtime << " us per run";
    std::cout << runtime << endl;

    cout << "Checking results ...\n";

    double accu_err = 0;
    double signErrCount = 0;
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    double valueErrCount = 0;
    for( auto row = 0 ; row < rowC ; row ++ )
    {
      for( auto col = 0 ; col < colC ; col ++ ){
        float tmp = abs( tf_res(row, col) - eigen_res(row, col) );
        accu_err += tmp;
        if(  tf_res(row, col) * eigen_res(row, col) < 0 ){
          // cout << "(" << row << "," << col << ") sign err, tf_res 
" << tf_res(row, col) << " eigen_res " << eigen_res(row, col) << 
endl;
          signErrCount++;
        }
        else if( tmp > 1 ){
          // cout << "(" << row << "," << col << ") val err, tf_res 
" << tf_res(row, col) << " eigen_res " << eigen_res(row, col) << 
endl;
          valueErrCount++;
        }
      }
    }
    cout << "err per unit: " << accu_err/(rowC*colC) << ", 
signErr(%) " << signErrCount/(rowC*colC) << ", valueErr(%) " << 
valueErrCount/(rowC*colC) << endl;

    free(TensorC);

    return 0;
}
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#include "CL/cl.h"
#include "Timer.h"
#include "clMemTester.h"
#include <iostream>

// clMemTester constructor
clMemTester::clMemTester(int num){
  numTests = num;
}

// Init OpenCL objects
cl_int clMemTester::init()
{
  // OpenCL error code init
  err = CL_SUCCESS;

  // Query platforms
  err = clGetPlatformIDs(1, &platform, NULL);
  if( err != CL_SUCCESS )
    return err;

  // Query devices
  err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &clDevice, 
NULL);
  if( err != CL_SUCCESS )
    return err;

  // Create context
  clCtx = clCreateContext(NULL, 1, &clDevice, NULL, NULL, NULL);

  // Create command clQueue
  clQueue = clCreateCommandQueue(clCtx, clDevice, 0, NULL);

  // Timer init
  Timer timer = Timer();

  return CL_SUCCESS;
}

// Release all OpenCL related resourcse
cl_int clMemTester::clEnd(){
  clReleaseCommandQueue(clQueue);
  clReleaseContext(clCtx);
  return CL_SUCCESS;
}

// Host to device memory bandwidth test
cl_int clMemTester::HostToDevice( unsigned long int numBytes )
{
  // Create host buffer
  char * hostBufPtr = new char [ numBytes ];
  for ( auto i = 0; i < numBytes; i++ )
  {
      hostBufPtr[i] = (i & 0xff);
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  }

  // err code init
  err = CL_SUCCESS;

  // Create device buffer
  cl_mem deviceBuffer = clCreateBuffer( clCtx, CL_MEM_READ_WRITE, 
numBytes, NULL, &err );
  if ( err != CL_SUCCESS )
  {
      std::cerr << "clCreateBuffer fail with code " << err;
      delete [] hostBufPtr;
      return err;
  }

  clFinish( clQueue );

  timer.start();

  // Write host -> device
  for ( size_t i = 0; i < numTests; i++ )
  {
      // Asynchronous write
      err = clEnqueueWriteBuffer( clQueue, deviceBuffer, CL_FALSE, 
0, numBytes,
        hostBufPtr, 0, NULL, NULL );
      if (err != CL_SUCCESS )
      {
          std::cerr << "Error writing device buffer";
          clReleaseMemObject( deviceBuffer );
          delete [] hostBufPtr;
          return err;
      }
  }

  // Finish any outstanding writes
  clFinish( clQueue );

  computeBandwidth( numBytes, timer.read_us() );
  delete [] hostBufPtr;
  clReleaseMemObject( deviceBuffer );
  return CL_SUCCESS;
}

// Device to host memory bandwidth test
cl_int clMemTester::DeviceToHost( unsigned long int numBytes )
{
  // Create host buffer
  char * hostBufPtr = new char [ numBytes ];
  for ( auto i = 0; i < numBytes; i++ )
  {
      hostBufPtr[i] = (i & 0xff);
  }
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  // err code init
  err = CL_SUCCESS;

  // Copy the contents of the host buffer into a device buffer
  cl_mem deviceBuffer = clCreateBuffer( clCtx,
    CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, numBytes, hostBufPtr, 
&err );
  if ( err != CL_SUCCESS )
  {
      std::cerr << "clCreateBuffer fail with code " << err;
      delete [] hostBufPtr;
      return err;
  }

  clFinish( clQueue );

  timer.start();

  // Read from device -> host
  for ( size_t i = 0; i < numTests; i++ )
  {
      // Asynchronous read
      err = clEnqueueReadBuffer( clQueue, deviceBuffer, CL_FALSE, 0, 
numBytes,
        hostBufPtr, 0, NULL, NULL );
      if (err != CL_SUCCESS )
      {
          std::cerr << "Error writing device buffer";
          clReleaseMemObject( deviceBuffer );
          delete [] hostBufPtr;
          return err;
      }
  }

  // Finish any outstanding writes
  clFinish( clQueue );

  computeBandwidth( numBytes, timer.read_us() );
  delete [] hostBufPtr;
  clReleaseMemObject( deviceBuffer );
  return CL_SUCCESS;
}

// Device to device memory bandwidth test
cl_int clMemTester::DeviceToDevice( unsigned long int numBytes )
{
  // Create host buffer
  char * hostBufPtr = new char [ numBytes ];
  for ( auto i = 0; i < numBytes; i++ )
  {
      hostBufPtr[i] = (i & 0xff);
  }

  // err code init
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  err = CL_SUCCESS;

  // Copy the contents of the host buffer into a device buffer
  cl_mem deviceBufferSrc = clCreateBuffer( clCtx,
    CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, numBytes, hostBufPtr, 
&err );
  if ( err != CL_SUCCESS )
  {
      std::cerr << "clCreateBuffer fail with code " << err;
      clReleaseMemObject( deviceBufferSrc );
      delete [] hostBufPtr;
      return err;
  }

  // Create another device buffer to copy into
  cl_mem deviceBufferDst = clCreateBuffer( clCtx, CL_MEM_READ_WRITE, 
numBytes,
    NULL, &err );
  if ( err != CL_SUCCESS )
  {
      std::cerr << "clCreateBuffer fail with code " << err;
      clReleaseMemObject( deviceBufferDst );
      delete [] hostBufPtr;
      return err;
  }

  clFinish( clQueue );

  timer.start();

  // Copy from device -> device
  for ( size_t i = 0; i < numTests; i++ )
  {
      // Asynchronous write
      err = clEnqueueCopyBuffer( clQueue, deviceBufferSrc, 
deviceBufferDst,
        0, 0, numBytes, 0, NULL, NULL );
      if (err != CL_SUCCESS )
      {
          std::cerr << "Error copying device buffer";
          clReleaseMemObject( deviceBufferSrc );
          clReleaseMemObject( deviceBufferDst );
          delete [] hostBufPtr;
          return err;
      }
  }

  // Finish any outstanding writes
  clFinish( clQueue );

  computeBandwidth( numBytes, timer.read_us() );
  delete [] hostBufPtr;
  clReleaseMemObject( deviceBufferSrc );
  clReleaseMemObject( deviceBufferDst );
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  return CL_SUCCESS;
}

// Memory bandwidth calculator
void clMemTester::computeBandwidth(size_t numOfBytes, const double& 
time_us){

  double MB = numOfBytes / (1024*1024);
  printf("%.2f\n", MB * numTests * 1e6 / time_us / 1024);
}
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