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ABSTRACT
Architectural innovation in graph accelerators attracts research
attention due to foreseeable inflation in data sizes and the irreg-
ular memory access pattern of graph algorithms. Conventional
graph accelerators ignore the potential of Non-Volatile Memory
(NVM) crossbar as a dual-addressing memory and treat it as a tra-
ditional single-addressing memory with higher density and better
energy efficiency. In this work, we present GraphRC, a graph ac-
celerator that leverages the power of dual-addressing memory by
mapping in-edge/out-edge requests to column/row-oriented mem-
ory accesses. Although the capability of dual-addressing memory
greatly improves the performance of graph processing, somemem-
ory accesses still suffer from low-utilization issues. Therefore, we
propose a vertex merging (VM) method that improves cache block
utilization rate bymerging memory requests from consecutive ver-
tices. VM reduces the execution time of all 6 graph algorithms on
all 4 datasets by 24.24% on average. We then identify the data de-
pendency inherent in a graph limits the usage of VM, and its effec-
tiveness is bounded by the percentage of mergeable vertices. To
overcome this limitation, we propose an aggressive vertex merg-
ing (AVM) method that outperforms VM by ignoring the data de-
pendency inherent in a graph. AVM significantly reduces the ex-
ecution time of ranking-based algorithms on all 4 datasets while
preserving the correct ranking of the top 20 vertices.

CCS CONCEPTS
•Hardware→Non-volatile memory; • Software and its engi-
neering→ Main memory.

KEYWORDS
graph processing, RC-NVM, dual-addressing memory, utilization,
over-read, vertex merging
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1 INTRODUCTION
Graphs are widely used to express the relationship between data.
To efficiently accommodate a large graph in memory devices for
processing, Non-Volatile Memory (NVM) is one of the promis-
ing candidates to take the role of Dynamic Random-Access Mem-
ory (DRAM), which suffers from high unit costs and leakage
power [14]. As NVM technologies become mature, a new NVM de-
vice, called Row-Column-NVM (RC-NVM) [17, 18, 24], is launched
to integrate NVM technologies with the crossbar architecture. RC-
NVM can not only provide larger and greener memory capacity
than DRAM, but can also support a new memory access paradigm,
that is the dual-addressing capability. In contrast to traditional
memory devices which can only access in one direction (e.g., only-
row or only-column), RC-NVM can access data either from the
row or column direction. This dual-addressing capability can effec-
tively improve the performance of graph processing. However, we
found that the size mismatching between the graph data and the
cache block1 might reduce the cache block utilization rate while
the system only accesses a few data in the cache block. The ob-
served low cache block utilization issue of RC-NVMmotivates this
work to merge graph requests by selecting appropriate memory in-
structions (i.e., row-oriented or column-oriented). Merging graph
requests eventually generates a higher cache block utilization rate
and leads to better performance on RC-NVM.

The size of most real-world graphs is gigantic and thus it is ex-
pensive and energy-inefficient to store the whole graph in DRAM.
Memory extension [21, 27] is a practical solution to meet this huge
memory demand with lower costs. It works by storing the whole
graph in storage devices and moving the required sub-graph to
memory devices on-demand [30, 32]. However, intensive graph
data movements between memory and storage devices is a critical
issue for the memory extension solution. Fortunately, the manu-
facturing improvement makes storage and memory devices more
powerful so the data movement costs between memory and stor-
age devices are effectively reduced [23, 27]. For example, ultra-
low-latency storage devices (e.g., NVDIMM [2, 26] and Samsung z-
NAND Solid-State Drives (SSDs) [6]), which hit the market in 2017,

1The minimum access granularity of RC-NVM is a cache block, usually 64 bytes.
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can provide ten times faster access latency than traditional SSDs. In
addition to storage devices, NVM devices can provide near-DRAM
access latency with lower unit costs and nearly no leakage power
compared with DRAM. NVM devices (e.g., Phase Change Memory
(PCM) and ReRAM) have drawn huge attention in several research
fields, such as neural networks [8, 25, 28] and random forests [3, 9].

Mature manufacturing technologies not only enhance the de-
vice capability but also open up new prospects for the integra-
tion ofmemory devices and novel architectures.The ReRAM-based
crossbar accelerator, which is one of the famous integration be-
tween ReRAM technologies and crossbar architectures, provides
the capability to run matrix multiplication operations inside the
device [7, 22]. Due to its distinctive specialization in matrix mul-
tiplications, the use case of the ReRAM-based crossbar accelera-
tor is limited to applications that require intensive matrix multipli-
cations, such as neural networks. Moreover, ReRAM-based cross-
bar architecture still faces several critical challenges which hinder
this device from being production-ready. For instance, its periph-
eral circuits (e.g., the digital-to-analog converter and the analog-
to-digital converter) suffer from high area costs [12, 31] and its
sensing accuracy is unacceptable when more currents are summed
on a bitline [1, 4, 10]. In addition to ReRAM-based crossbar ac-
celerators, RC-NVM, which is a novel memory device also based
on the integration between ReRAM technologies and crossbar ar-
chitectures, supports dual-addressing capability with insignificant
area costs [17]. With the support of dual-addressing capability, a
memory location can be referenced in either row-oriented address
space or column-oriented address space. In contrast to DRAM sup-
porting only single-addressing memory, RC-NVM provides a new
memory access paradigmwhich could accelerate the access perfor-
mance of 2D data structures [24], such as tabular and graph struc-
tures widely used in databases and graph systems, respectively.

Although the capability of dual-addressing provides an oppor-
tunity to improve the performance of accessing graph data, some
memory accesses suffer from low-utilization while deciding to use
row-oriented or column-oriented accesses without considering the
graph layout. Due to the size mismatching between the graph data
and the cache block size, graph systems are required to issue extra
memory requests when the utilization of some cache blocks is low.
To efficiently access the graph data stored in RC-NVM, we propose
GraphRC to improve the cache block utilization by selecting suit-
able memory instructions (i.e., row-oriented or column-oriented)
for merging while considering the graph data layout on RC-NVM.
We summarized our contributions as follows:

• We show that graph processing can be accelerated on dual-
addressing memory by mapping in-edge/out-edge requests
to column/row-oriented memory accesses respectively.
• We identify that some memory accesses still suffer from a

low utilization rate on dual-addressing memory due to the
size mismatching between graph data and the cache block
size. Therefore, we propose a vertex merging (VM) method
that improves the cache block utilization rate by merging
memory requests from consecutive vertices. VM reduces the
execution time of all 6 graph algorithms on all 4 datasets by
24.24% on average.
• We perform a detailed analysis on data dependency inher-

ent in a graph and identify the factor that limits the effec-
tiveness of VM is the percentage of mergeable vertices in
a graph. Based on this observation, we propose aggressive
vertex merging (AVM), a method that merges vertices based

Figure 1: A graph stored in (b) adjacency matrix format or
(c) COO format or (d) shard format.

on the importance of a vertex, not its data dependency. AVM
significantly reduces the execution time of ranking-based al-
gorithms on all 4 datasets while preserving the correct rank-
ing of the top 20 vertices.

The rest of this paper is organized as follows. Section 2 presents
the background, observation and motivation of this paper. Sec-
tion 3 presents the proposed methods: VM and AVM that reduce
the overall execution time of graph algorithms on dual-addressing
memory. The experimental results are reported and discussed in
Section 4. Section 5 concludes this paper.

2 BACKGROUND, OBSERVATION AND
MOTIVATION

2.1 Graph Representation
Graphs are usually used to express the relationship between data.
Each data is represented as a vertex and two related vertices will
be connected by an edge, where the value of the edge represents
how relative the two connected vertices is. Picked any vertex as
a source in a directed graph, all edges pointing to this source are
called in-edges and all edges pointing from this source to other
destination vertices are called out-edges. For example, a directed
graph is shown in Figure 1(a), where vertex 1 has three in-edges
and one out-edge. To store a graph in computing systems, an ad-
jacency matrix is a common way as shown in Figure 1(b), where
row and column indices represent the source and destination ver-
tices, respectively. Each element in matrix stores the correspond-
ing edge value. However, adjacency matrices are usually sparse
because graph data usually show power-law distribution [19], i.e.,
most vertices will point to very few hub vertices. To avoid this
sparsity characteristic wasting too much memory, a coordinate list
(COO) format is widely used to effectively store a graph in mem-
ory. As shown in Figure 1(c), a list comprises source-destination
pairs, where each pair contains three fields: src, dst, and val repre-
senting an index of a source vertex, an index of a destination vertex
and their corresponding edge value, respectively.

In contrast to an adjacency matrix, it is time-consuming to find
a targeted source-destination pair in a COO list format because
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systems shall look up the list row-by-row in a brute-force way. To
efficiently find a targeted pair in a COO list format, modern graph
systems preprocess and convert a COO list format to a destination-
based shard format. Practically, systems will first sort all source-
destination pairs by their destination index (i.e., the dst field) and
then partition the sorted COO list into several shards. Each shard
consisted only of pairs with a certain destination indices, such as
shard 0 in Figure 1(d) only contains pairs with their dst field setting
to 0 or 1. To further improve the searching performance, all pairs
in a shard are sorted by the source index.

Enterprises usually run link analysis techniques, e.g., PageRank
and single-source shortest path, to extract useful information from
the destination-based shard format. The conceptual model of the
link analysis technique is that each vertex will first gather infor-
mation from its neighbors by reading values on all in-edges, and
then propagates the value by updating the results to all out-edges.
For example, to run a link analysis on vertex 0 in Figure 1(a), it first
accumulates the values on two in-edges associated with vertices 3
and 4, and then updates two out-edges associatedwith vertex 1 and
2. To read all values on in-edges, the graph systemwill read out the
whole shard 0 in Figure 1(d) row-by-row from the memory and re-
trieve all values where their dst fields are 0. However, reading out
all source-destination pairs from a shard is time-consuming and
unnecessary. Obviously, a better way is to read out the dst column
and then only read out two rows where their dst fields are 0. How-
ever, due to the constraint of the architecture of DRAM, data can
only be read from one direction, which is row-oriented or column-
oriented.This hardware constraint hurts the performance of graph
processing for several decades.

2.2 RC-NVM Architecture
To unleash the constraint of traditional memory devices, a new
memory device, called Row-Column-NVM (RC-NVM), was pro-
posed in [17]. In contrast to traditional DRAM structures, RC-NVM
employs non-volatile memory (e.g., ReRAM [11]) as its memory
cells and adopts the crossbar architecture [5, 10]. Figure 2 shows
the architecture of RC-NVM. The architecture of RC-NVM is simi-
lar to DRAM and is organized hierarchically as channel, rank, chip,
bank, subarray, and Mat. RC-NVM enables dual-addressing abil-
ity by adding extra elements at different hardware levels. Both
row buffer and column buffer are shared among banks in RC-
NVM while there is only a stand-alone row buffer for each bank
in DRAM. Furthermore, both write driver (WD) and sense ampli-
fier (SA) are placed on both sides of a RC-NVM Mat such that a
memory cell can be driven or sensed from either row or column di-
rection. Thanks to this hardware characteristic, RC-NVM can read
data either from row-oriented address space or column-oriented
address space.

Figure 2: RC-NVM architecture

A logical subarray is a set of physical subarrays scatter over
different chips within the same rank. As shown in Figure 3, eight
physical subarrays among eight different chips are viewed as a sin-
gle logical subarray. Each physical subarray contributes 1

8 of data
to a logical subarray. For instance, an 8-byte Mat (black square in
Figure 3) in logical subarray consists of 8-bit data chunks from 8
different physical subarrays as shown in Figure 3.

The size of a cache block is 64 bytes (i.e., 8Mats) for RC-NVM.As
shown in Figure 3, a cache block will be transferred from memory
to row or column buffer if referenced in the corresponding address
space.

Figure 3: Physical and logical subarray

2.3 Observation: Cache Block Utilization
Given the access flexibility provided by the RC-NVM, graph sys-
tems can effectively avoid issuing unnecessary memory instruc-
tions. However, we observed that graph systems might suffer from
the over-read issue where the utilization of some cache blocks is
low. Due to the size mismatching between each source-destination
pair (24B2) in a shard format and a cache block (64B), each cache
block might contain two source-destination pairs. The over-read
issue is caused when only one source-destination pair is used in
an accessed cache block. That is, the utilization of the cache block
is only about 50%. Moreover, due to the fact that graphs usually
follow the power-law distribution, most vertices have very few in-
edges and out-edges, and thus source-destination pairs belonging
to irrelevant vertices have a high probability to be stored in the
same cache block.

Generally, there are two different data placement strategies for
placing source-destination pairs on RC-NVM, that is the row-first
placement and the Z-ordering placement. We found that systems
might suffer from the over-read issue no matter which placement
strategy is adopted. The row-first placement places all pairs in a
shard row-by-row, as shown in Figure 4(a). The row-first place-
ment strategy offers high cache block utilization when a column-
oriented access is issued, but suffers from the serious over-read
issue while systems trigger a row-oriented access. On the other
hand, the Z-ordering placement aims to placemore pairs belonging
to the same shard in the same cache block, as shown in Figure 4(b).

2In our system, we use 8 bytes to represent both source and destination indices, and
8 bytes to represent an edge value.
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Figure 4: (a) Row-first placement strategy, and (b) Z-ordering
placement strategy.

The Z-ordering placement strategy provides high cache block uti-
lization when a row-oriented access is issued, but suffers from the
serious over-read issue while systems trigger a column-oriented
access. To illustrate our designs easily, we use the row-first place-
ment in the reset of this paper. Please note that, with some modest
adjustments, our solution can also support systems using the Z-
ordering placement.

Figure 5: Access in-edge weights of vertex 0, 1 in (a) row ad-
dress space or in (b) column address space.

Based on our observations, selecting suitable memory instruc-
tions (i.e., row-oriented or column-oriented) with considering the
graph data layout on RC-NVM could alleviate the over-read is-
sue and thus improve the utilization of cache block. Assuming the
graph system decides to read all in-edges associated with two ver-
tices (i.e., v0, v1) from the graph in Figure 1(a). To simplify the
explanations, we assume the cache block size is set to 48 bytes in
this example. The system requires 5 row-oriented instructions (as
shown in Figure 5(a)) or 3 column-oriented instructions (as shown
in Figure 5(b)) to read out all data. Obviously, the cache block uti-
lization is 50.0% and 83.3% while using row-oriented instructions
and column-oriented instructions, respectively. In this case, sys-
tems can save 2 memory instructions if we decide to use column-
oriented instructions to read out the required data.

2.4 Motivation
Aiming at improving the performance while accessing graph data
stored in RC-NVM, we are mainly interested in how to improve
the cache block utilization by carefully deciding on suitable mem-
ory instructions (i.e., row-oriented or column-oriented). In contrast
to previous designs which cannot effectively decide suitable mem-
ory instructions for different graph requests, this work is interested

in proposing a hardware/software co-design solution to make the in-
struction decision by considering the graph data layout on RC-NVM.
The major technical challenges are on how to merge graph re-
quests, which access the source-destination pairs located in the
same cache block, and how to decide a cache-block-utilization-
friendly memory instructions for serving each request issued from
graph systems.

3 GRAPHRC
This section first demonstrates how GraphRC leverages the power
of dual-addressing memory by proposing a vertex merging (VM)
method that merges memory instructions of consecutive vertices
for a better cache block utilization rate. Subsequently, we discuss
how data dependency embedded in a graph affects the usage of VM
and discover that the improvement obtained from VM is limited by
the number of mergeable vertices in a graph. In order to further im-
prove the performance, we propose an aggressive vertex merging
(AVM) method that achieves more speedup by ignoring the depen-
dency inherent in a graph.

3.1 Vertex Merging
In this section, we run a graph algorithm on GraphRC as an ex-
ample to demonstrate how vertex merging improves cache block
utilization among consecutive vertices. Furthermore, we identify
the 4 restrictions on vertex merging and the consequences upon
violation.

Generally speaking, a graph algorithm involves a sequence of
in-edge and out-edge requests for each vertex. Without loss of gen-
erality, we assume a vertex first reads from its in-edges to gather
information from its neighbors and then writes to its out-edges for
results propagation. Other graph algorithms might have different
patterns; however, similar results can be deduced by analogy.

The shard table in Figure 6(a) illustrates how the graph in Fig-
ure 1(a) is preprocessed into shard format and stored in a RC-NVM
logical subarray. It contains idx, src, dst, val fields. The idx field
shows the index of an edge within a shard, and the other three
fields store necessary information for an edge. The idx field will
not occupy any storage in memory; however, it is still listed for
the ease of reading. The memory instruction table in Figure 6(b)
lists the memory instructions generated by GraphRC accelerator.
The Type field shows the memory instruction type in that clock cy-
cle. Available options are R (row read), W (row write), CR (column
read), CW (columnwrite).The Index field shows the index range of
a targeted memory region. The Field option shows which field will
be accessed. Available options are: src, dst, val, and all (all three
fields are accessed).

Graph data is preprocessed into shard format so in-edges of ver-
tex 2, 3, 4 shall appear in shard 1 in Figure 6(a). In cycle 0 and 1,
two column read (CR) instructions on dst and val fields retrieve
the in-edges of vertex 2 from shard 1 as shown in Figure 6(b). The
first column read (CR) instruction in cycle 0 finds edges with dst
field equals to 2, and the second column read (CR) instruction in
cycle 1 finds the corresponding in-edge weights for vertex 2. Sub-
sequently, in-edges of vertex 3 and 4 are retrieved from shard 1 in
cycle 3, 4, and 7 using a similar manner. Notice that in cycle 7, a
column read instruction in dst field is required to figure out that
there is no in-edge for vertex 4; therefore, a column read instruc-
tion in val field can be skipped. All three vertices (vertex 2, 3, 4)
read the samememory region in shard 1.The in-edge requests of all
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Figure 6: (a) Shard tables (b) Memory instruction table (only contains memory instructions for vertex 2,3,4) (c) Memory in-
struction table after vertex merging. (d) An intra-interval connection added between vertex 2 and 3.

three vertices can be shared and the corresponding column read in-
structions can be merged. As shown in Figure 6(b) and Figure 6(c),
in-edge requests are merged for those vertices.

In cycle 2, one row write (W) instruction writes to out-edge of
vertex 2 in shard 0. This instruction targets edges with src field
equals to 2 in shard 0. Subsequently, out-edges of vertex 3 and 4
are written to shard 0 in cycle 5, 6, and 8. Out-edge requests for ver-
tex 2, 3, and 4 form a 4-unit-tall and 3-unit-wide memory access
region (blue) in Figure 6(a). This region requires 4 row-oriented
cache blocks to cover and each row-oriented cache block only cov-
ers one source-destination pair. Alternatively, the same memory
region can be covered with 3 column-oriented cache blocks in src,
dst, and val fields (red). In that case, the cache block utilization rate
will be improved as the number of cache blocks required to cover
this region is reduced from 4 to 3. The geometric overview offered
by a shard table demonstrates how RC-NVM improves cache block
utilization by switching between address spaces. As for instruc-
tions on the memory instruction table, 4 row writes (W) instruc-
tions marked by dotted blue lines are reduced to 3 column writes
(CW) instructions in Figure 6(c).

It is possible to reorder and regroupmemory instructions of con-
secutive vertices such that in-edge requests are shared among con-
secutive vertices and out-edge requests form an enlarged access
region in RC-NVM. A target memory region will be covered with
cache blocks from another dimension to improve the overall cache
block utilization rate.This technique that improves the cache block
utilization rate by alternating between both address spaces for con-
secutive vertices is called vertex merging (VM). Performance com-
parison between two memory instruction tables in Figure 6(b) and
Figure 6(c) shows that the overall cycle time is reduced from 9 to
5 (1.8x speedup) with the help of vertex merging.

Unfortunately, some vertices cannot be merged due to the fol-
lowing 4 reasons. Firstly, vertex merging only works when con-
secutive vertices belong to the same interval. Intervals are disjoint
sets of vertices in a graph, and edges in a graph are partitioned

into shards based on intervals. For instance, vertex 2, 3, 4 in Fig-
ure 6(d) belong to the same interval so edges with destination ver-
tices fall into this interval are grouped into shard 1. In-edges of
vertices from different intervals lie in different shards, and it is
impossible to have a cache block that spans multiple shards. Sec-
ondly, only consecutive vertices can be merged. It is meaningless
to merge separate vertices since their edge data exhibits poor lo-
cality. Thirdly, a vertex cannot be merged if previous 𝑘 vertices
have been merged. 𝑘 is the maximum number of consecutive ver-
tices that can be merged. Finally. vertex merging does not work
on consecutive vertices that have intra-interval edge connections.
Consider the example in Figure 6(d), vertex merging cannot be ap-
plied to vertex 2, 3, 4 if there exists an edge between vertex 2 and
vertex 3.

This additional edge implies data dependency between vertex
2 writing to its out-edges, and vertex 3 reading from its in-edges.
As shown in the dotted red line in Figure 6(b), this constraint en-
forces that the row write (W) instruction in cycle 2 must precede
the column read (CR) instruction in cycle 4. It cannot be met if
vertex merging is applied since vertex 3 reads from its in-edges
before vertex 2 writes to its out-edges in Figure 6(c). Assume 𝑤
is the original edge weight between vertex 2 and 3 as shown in
Figure 6(d). Without vertex merging, vertex 2 should propagate its
data to vertex 3 by writing 𝑤 + Δ𝑤 to its out-edges. Vertex 3 will
then compute its data based on𝑤+Δ𝑤 . However, if vertex merging
is applied regardless of the dependency in between, vertex 3 will
receive out-dated in-edgeweight𝑤 while the correct one is𝑤+Δ𝑤 .
The difference between 𝑤 and 𝑤 + Δ𝑤 might seems negligible for
some algorithms but can significantly affect error-sensitive ones.

3.2 Aggressive Vertex Merging
For ranking-based graph algorithms people only care about the
highest ranking (or perhaps top-N ranking) vertices in a graph, the
exact outcome of each vertex is not an issue; however, the relative
ranking order is more of a concern.

As discussed in the previous section, intra-interval connections
limit the number of vertices that can bemerged. For error-sensitive
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graph algorithms, the data dependency induced in the graph struc-
ture must be respected and that poses a theoretical limit for the
speedup we can harvest from vertex merging. A vertex cannot be
merged if it has intra-interval edges or if we reach the maximum
number of vertices that can be merged. Now assume the maximum
number is set to infinity, the number of vertices that can be merged
will only depend on the intra-interval edge connections. That is to
say, the theoretical speedup we can obtain from vertex merging
depends on the structure of a graph.

Intra-interval edge connections within a graph limit our ability
to merge memory instructions of vertices to gain speedup. Break-
ing such dependency results in unacceptable outcomes for error-
sensitive algorithms but is considered tolerable for ranking algo-
rithms. We believe that data dependencies of important vertices in
a graph might have a larger impact on the algorithmic outcome
compared to data dependencies of trivial vertices. To be more spe-
cific, we respect the constraints of important vertices and declare
them as “unmergeable” while ignoring the constraints of trivial
vertices. As mentioned in the example in Figure 6(d), an unmerge-
able vertex will receive outdated edge weights if it is eventually
merged, and thus, generates inaccurate results. Thus, if a vertex
is considered important, its data dependency will be respected and
should not be merged to ensure minimal accuracy loss. On the con-
trary, data dependency of trivial vertices can be ignored so that
it can speedup the performance through vertex merging. Trading
accuracy for speedup is feasible for ranking algorithms such as
PageRank [20] or ArticleRank [16].

Based on this observation, we propose aggressive vertex merg-
ing (AVM) that merges a vertex based on its importance instead of
its inherent data dependency. There are lots of metrics to evaluate
the importance of a vertex. Without loss of generality, we use De-
gree Centrality algorithm, which counts the total number of edges
connected to a vertex, as an evaluationmetric for the importance of
a vertex. The adoption of Degree Centrality is reasonable because
low-degree vertices usually access a small number of entries in a
shard table and should be merged with others to improve cache
block utilization. As for high degree vertices, which access many
entries in a shard table, they don’t need to “carpool” with other
vertices to further improve cache block utilization.

3.3 Cost to Support VM and AVM
Apparently, the control logic for the graph accelerator needs to be
modified to support both VM andAVM.The original control loop is
redesigned to the one in Algorithm 1. A FIFO queue is introduced
in the control loop to buffer vertices that can be merged.The queue
is emptied if it encounters an unmergeable vertex or if the queue
is full. Else, vertices will be buffered and wait to be dispatched.
Queue size is an architectural parameter, and the relation between
speedup and the size of a queue will be discussed in Section 4.

The dispatch subroutine in Algorithm 1 is explained in Algo-
rithm 2. This function first issues read requests for all buffered ver-
tices in queue, and all the data read from RC-NVMwill be retained.
Subsequently, after every vertex finishes its computation, results
of all buffered vertices will be written back to RC-NVM.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
In this section, we discuss the the experimental procedures, graph
algorithms evaluated, and graph datasets used in the experiments.

Algorithm 1 GraphRC control loop for VM
Input: iteration← maximum iteration count
Input: 𝐺 = (𝑉 , 𝐸) ← input graph
1: procedure ContRolLoop(iteration, G)
2: Queue queue;
3: for 𝑖𝑡𝑟 ← 0 to iteration do
4: for each 𝑣 ← 0 to G.V do
5: if 𝑣 .not_mergeable then
6: Dispatch(queue) ⊲ 𝑣 cannot be merged
7: else
8: queue.push(𝑣)
9: end if

10: if queue.is_full then
11: Dispatch(queue) ⊲ queue is full
12: end if
13: end for
14: end for
15: end procedure

Algorithm 2 Dispatch function
1: procedure Dispatch(queue)
2: for each v ∈ queue do ⊲ Read in-edges
3: v.read_in_edges()
4: end for
5: for each v ∈ queue do ⊲ Compute
6: v.compute()
7: end for
8: for each v ∈ queue do ⊲ Write out-edges
9: v.write_out_edges()

10: end for
11: queue.size← 0 ⊲ Empty queue
12: end procedure

4.1.1 Experimental Procedures. Experimental procedures consist
of three parts: graph partition, memory trace generation, and per-
formance evaluation. Firstly, we adopt the shard-based graph par-
tition algorithm from GraphChi [13] by decoding its intermediate
files. We then use the decoded files to simulate the graph process-
ing flow in our in-house simulator written in C++. Secondly, our
simulator takes shard data and vertex-centric graph algorithms
as inputs and generates memory traces for the entire execution
process. Finally, we evaluate the performance by sending cycle-
accurate trace files to the RC-NVM simulator to obtain the overall
execution time. All experiments are conducted on an Intel i7-8700
computer.

4.1.2 Graph Algorithms. All 6 graph algorithms implemented
on our simulator follow the vertex-centric-like API defined by
GraphChi [13]. PageRank [20] (PR), Connected Components (CC),
Degree Centrality (DC) algorithms are modified from open-source
online examples. ArticleRank [16] (AR), Breadth-First Search
(BFS), and Single-Source Shortest Path (SSSP) algorithms are self-
implemented and written in the most efficient way best to our
knowledge [29].

4.1.3 Graph Datasets. We run all graph algorithms on four graph
datasets provided by SNAP [15], as shown in Table 1. ego-Facebook
(FB) and ego-Twitter (TW) are social network graphs. Wiki-Vote
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Dataset name # of Vertices # of Edges
ego-Facebook (FB) [15] 4,039 88,234
Wiki-Vote (WV) [15] 7,115 103,689
ego-Twitter (TW) [15] 81,306 1,768,149

web-NotreDame (ND) [15] 325,729 1,497,134
Table 1: Graph datasets

(WV) is the voting network among Wikipedia contributors. web-
NotreDame (ND) is the network topology of the University of
Notre Dame website. The number of vertices and edges in each
dataset is shown in Table 1.

FB WV TW ND
Mergeable vertices (%) 42.06% 80.46% 14.57% 68.97%

Table 2: Percentage of vertices that can be merged in differ-
ent graph datasets.

As illustrated in section 2, graph data will be preprocessed to a
shard format and stored in RC-NVM. Vertices in a graph are first
partitioned into intervals, and a vertex is mergeable if it does not
have intra-interval edge connections. An intra-interval edge con-
nection is defined as an edge connection between vertices located
in the same interval.The percentage of vertices that can be merged
for each graph dataset is shown in Table 2. A higher percentage in
Table 2 indicates a graph has higher potential for vertex merging.

4.2 Performance
In this section, all graph algorithms are evaluated on graph
datasets to compare the performance improvement obtained in dif-
ferent scenarios. This section is divided into 3 parts. The first part
discusses the improvement offered by RC-NVM. The second part
discusses the improvement offered by our VM method given the
different number of vertices being merged. The third part evalu-
ates the impact of AVM method and discusses how it surpasses
VM method.

4.2.1 RC-NVM. In Figure 7, all graph algorithms are executed on
all datasets for both traditional row-only memory and RC-NVM.
The overall execution time of all 6 algorithms on WV and FB
datasets are shown in Figure 7(a), Figure 7(b), and Figure 7(c), re-
spectively. The overall execution time of all 6 algorithms on TW
and ND datasets are shown in Figure 7(d), Figure 7(e), and Figure
7(f), respectively. As for traditional row-only memory, it is sim-
ulated by RC-NVM with dual-addressing ability disabled. There-
fore, in-edge or out-edge requests will be converted to row-only ad-
dresses for traditional memory and converted to row and column-
oriented addresses for RC-NVM. Note that all 6 graph algorithms
are executed in a vertex-by-vertex manner and merging method
has not been applied so far. Overall, RC-NVM helps reduce the ex-
ecution time by at least 80.30% (at most 91.94% , on average 87.89%
) among all datasets. The improvement is phenomenal and the rea-
son behind can be best explained by the examples in Figure 5(a)
and Figure 5(b).

4.2.2 Vertex Merging. VM improves cache block utilization by re-
ordering memory accesses of consecutive vertices. The merging
mechanism can be implemented with a FIFO queue and the cost
to support VM is explained in details in Section 3. The size of
the queue controls the maximum number of vertices that can be

(a) PR and AR algo. on WV and
FB datasets.

(b) BFS and SSSP algo. on WV
and FB datasets.

(c) CC and DC algo. on WV and
FB datasets.

(d) PR and AR algo. on TW and
ND datasets.

(e) BFS and SSSP algo. on TWand
ND datasets.

(f) CC and DC algo. on TW and
ND datasets.

Figure 7:The performance comparisons between traditional
row-only memory, and RC-NVM. R-only for traditional
memory, and RC for RC-NVM.

merged in a graph. The effect of queue size on the overall perfor-
mance is shown in Figure 8. The results in Figure 8(a), Figure 8(b),
Figure 8(c), and Figure 8(d) show how VM improves the overall
performance onWV, FB, TW, and ND datasets, respectively. When
queue size is set to 4, at most 4 consecutive vertices can be merged,
and the execution time of all algorithms is reduced by at least
14.61% (at most 52.78% , on average 24.24% ) among all datasets. For
all cases in Figure 8, the effectiveness of vertex merging plateaus to
a limit as the queue size increases. The diminishing effect is caused
by the data dependency embedded in the structure of a graph.

Recall that the effect of vertex merging is limited by the percent-
age of mergeable vertices in a graph. As the queue size increases,
graphs with more mergeable vertices will gain more speedup. As
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(a) VM applied to all algo. onWV
datasets.

(b) VM applied to all algo. on FB
datasets.

(c) VM applied to all algo. on TW
datasets.

(d) VM applied to all algo. on ND
datasets.

Figure 8: The effect of vertex merging (VM). Notice that RC
stands for no vertexmerging, andVM(𝑛𝑢𝑚)means the queue
size is set to 𝑛𝑢𝑚.

shown in Table 2, WV and ND datasets have 80.46% and 68.97% of
mergeable vertices respectively. So, the impact of vertex merging
is more significant for both datasets in Figure 8(a) and Figure 8(d).

4.2.3 Aggressive Vertex Merging. AVM ignores data dependency
in graphs for better cache block utilization and is suitable for error-
tolerant algorithms. In Figure 9(a) and Figure 9(b), we compare
the performance of VM and AVM on WV and FB datasets. If the
queue size is set to 4, AVM reduces execution time by 73.27% on
WV dataset while VM only reduces 22.51%. It can be observed
that AVM offers more speedup compared to VM as the size of the
queue increases. In Figure 9(c) and Figure 9(d), the effectiveness of
AVM is more significant as we compare the performance of AVM
and VM on TW and ND datasets. Results show that AVM offers
more speedup as queue size increases; however, it achieves more
speedup at the expense of accuracy losses. For error-tolerant algo-
rithms like PR and AR, the ordering of the top 20 vertices remains
correct in all datasets when AVM is applied.

5 CONCLUSION
We present GraphRC, a graph accelerator that leverages the power
of dual-addressingmemory bymapping in-edge/out-edge requests
to column/row-oriented memory accesses. The capability of dual-
addressing memory greatly improves the performance of graph
processing; however, some memory accesses still suffer from a low
utilization rate due to the size mismatching between graph data

(a) VMapplied to PRalgo. onWV
and FB datasets.

(b) AVM applied to PR algo. on
WV and FB datasets.

(c) VM applied to PR algo. on TW
and ND datasets.

(d) AVM applied to PR algo. on
TW and ND datasets.

Figure 9: The effect of aggressive vertex merging (AVM) on
PageRank algorithm. Notice that RC stands for no vertex
merging, and AVM(𝑛𝑢𝑚) means the queue size is set to 𝑛𝑢𝑚.

and the cache block size. Therefore, we propose a vertex merg-
ing (VM) method that improves the cache block utilization rate
by merging memory requests from consecutive vertices. VM re-
duces the execution time of all 6 graph algorithms on all 4 datasets
by 24.24% on average. We then identify the data dependency in-
herent in a graph limits the usage of VM, and its effectiveness is
bounded by the percentage of mergeable vertices. To overcome
this limitation, we propose an aggressive vertex merging (AVM)
method that outperforms VM by ignoring the data dependency in-
herent in a graph. AVM significantly reduces the execution time
of ranking-based algorithms on all 4 datasets while preserving the
correct ranking of the top 20 vertices.
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