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Abstract—Convolutional neural networks (CNNs) have 

achieved tremendous success in the computer vision domain 
recently. The pursue for better model accuracy drives the model 

size and the storage requirements of CNNs as well as the 

computational complexity. Therefore, Compression Learning by 

InParallel Pruning-Quantization (CLIP-Q) was proposed to 

reduce a vast amount of weight storage requirements by using a 

few quantized segments to represent all weights in a CNN layer. 

Among various quantization strategies, CLIP-Q is suitable for 

hardware accelerators because it reduces model size significantly 

while maintaining the full-precision model accuracy. However, the 

current CLIP-Q approach did not consider the hardware 

characteristics and it is not straightforward when mapped to a 

CNN hardware accelerator. In this work, we propose a software-

hardware codesign platform that includes a modified version of 

CLIP-Q algorithm and a hardware accelerator, which consists of 

5x5 reconfigurable convolutional arrays with input and output 

channel parallelization. Additionally, the proposed CNN 

accelerator maintains the same accuracy of a full-precision CNN 

in Cifar-10 and Cifar-100 datasets. 

 

Index Terms—Convolutional Neural Network, CLIP-Q, 

Accuracy, Energy, Hardware Implementation 

 

I. INTRODUCTION 

n recent years, convolutional neural networks (CNNs) have 

been widely used in many applications, such as image 

classification [1], [2], [3], object detection [4], [5], [6], [7], 

semantic segmentation, [8], [9], [10], [11], visual question 

answering, [12], [13], [14], [15], speech recognition [16], and 

self-driving cars [17]. CNN achieves higher model accuracy 

than traditional image processing methods in the above 

applications given enough training data. 

However, to achieve better accuracy, the number of layers as 

well as the complexity of CNN models has increased 

significantly. The increased model complexity leads to an 

exponentially growing computational time of a CNN. For 

example, CNN models with more than 100 layers, such as 

ResNet101[18] and DenseNet121 [19], require a considerable 

amount of computing resources and memory space. In order to 

use computing resources and memory space more efficiently, 

quantization, which simplifies and optimizes the CNN model, 

has become a popular research field. 

Quantization [31][35][37] constrains a data representation to 

a smaller set, for example, using an 8-bit fixed point format to 

represent a 32-bit floating point format. Because fewer bits are 

used to represent a number, quantization greatly reduces storage 

requirements. For example, the authors in [20] use a 16-bit and 

8-bit fixed point format to represent data. Binary neural 

networks (BNNs) [21][22] and ternary neural networks (TNNs) 

[23] represent data in a CNN with less than two bits, which 

reduces the memory space requirement for more than sixteen 

fold. 

Recently, many attempts have been made to deal with the 

model sparsity through model compression [35][36][37], and 

Compression Learning by InParallel Pruning-Quantization 

(CLIP-Q) has been proposed in [24][25]. It quantizes the full-

precision weights by combining pruning and weight 

quantization into a single learning framework during CNN 

model training. Weight fine-tuning is also applied after model 

training is completed. Full-precision weights are discarded 

while quantized weights are kept. There are significantly fewer 

quantized weights than full-precision weights since these 

weights are compressed and stored in a sparse encoding format. 

Joint pruning and quantization help CLIP-Q achieve near-zero 

accuracy drop compared with full-precision models. 

Meanwhile, in order to accelerate CNN computation, many 

hardware CNN accelerators have been proposed. Instead of 

using a full-precision format, model weights, activation, and/or 

input are quantized. Because the computing units in the 

accelerators are designed according to the quantized data, the 

hardware CNN accelerator can effectively accelerate CNN 

computation. For example, if BNN only uses +1 and -1 to 

represent inputs and weights, XNOR gates can be used to 

replace the multiplication in a BNN. The authors in [26] 

designed a highly parallelized hardware CNN accelerator based 

on a BNN using XNOR for multiplication. The authors in [27] 

proposed a BNN accelerator, in which all convolutional 

operations are binarized and unified, to achieve better 

performance and energy efficient. However, for BNN 

accelerators, due to the limitation related to data precision when 

using these weights, these CNN hardware accelerators could 

not achieve the accuracy of full-precision weights. 

CLIP-Q quantizes CNN weights and maintains full-precision 

accuracy. Meanwhile, due to high computational complexity, it 
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is a trend to design a hardware accelerator to accelerate CNNs. 

However, CLIP-Q in [24][25] did not consider the hardware 

characteristics, and the method used to apply CLIP-Q when 

designing a CNN hardware accelerator is not straightforward. 

In order to design a CNN accelerator with CLIP-Q, we thus 

propose a software-hardware codesign platform that includes 

both the software flow and a hardware accelerator. Based on the 

results obtained from the software flow, we design an efficient 

CNN hardware accelerator. The contributions of this paper can 

be summarized as follows: 

• We propose a software-hardware codesign platform 

that includes both a software flow and a hardware 

accelerator. In the software flow, the parameters of 

CLIP-Q are determined. A CNN with the proposed 

CLIP-Q setup and adjustment only requires four 8-bit 

weights for a layer and 8 bits for activation and still has 

the same accuracy as full-precision CNN in Cifar-10 

and Cifar-100. 

• In the hardware accelerator, we propose a simple but 

effective weight decoder to retrieve weights during 

convolutional operations.  

• We implement a hardware CNN accelerator with a 

parallel architecture and design a reconfigurable 

convolutional array that performs convolutional 

operations with various kernel sizes. 

• The simulation results show that the proposed CNN 

hardware accelerator achieves better Giga Operations 

Per Second Per Watt (GOP/S/W) than the state-of-the 

art approach. 

The rest of the paper is organized as follows: Section II 

introduce the background, and Section III introduces the 

software-hardware codesign platform and the software flow on 

the platform. Section IV details the architecture of the CNN 

hardware accelerator. Section V introduces the experimental 

results, and Section VI concludes the paper. 

II. BACKGROUND 

A. CNN and Quantization NN 

CNN has been widely used in many applications, including 

image classification [1], [2], [3] , object detection [4], [5], [6], 

[7], semantic segmentation  [8], [9], [10], [11], visual question 

answering [12], [13], [14], [15], speech recognition [16], and 

self-driving cars [17]. CNN is mainly composed of 

convolutional, pooling and fully connected layers, as shown in 

Figure 1. CNN performs feature extractions through multiple 

convolutional layers and outperforms many current image 

processing methods.  

However, with the increasing number of layers and model 

complexity in CNN, CNN requires considerable memory and 

computing resources. As shown in Figure 1, with regard to 

memory usage, the weights of each convolutional layer require 

K*K*IC*OC*Wsize bytes of memory space, where K*K is the 

kernel size; IC is the input channel; Oc is output channel, and 

Wsize is the number of bytes for each weight. With regard to 

computations, if additions are not counted, each convolutional 

layer still requires K*K*IC*OC*OW*OH multiplications, where 

OW is the output width, and OH is the output height. The larger 

the input and output channels, the more memory usage and 

computation are required, which leads to increased latency and 

energy consumption. Therefore, reducing memory usage and 

computation requirement to accelerate CNN has attracted 

extensive attention. 
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Figure 1. CNN overview and details of a convolutional layer 

 

In a CNN, weight quantization is a widely used technique to 

reduce memory usage and computation demands. In weight 

quantization, weights are constrained to a set of discrete values, 

allowing the weights to be represented using fewer bits. 

Research in quantization includes [20] and [28]. These studies 

quantize data into 16-bit or 8-bit fixed-point formats using 

flexible quantization algorithms. Therefore, memory usage is 

only 1/2 to 1/4 that of the original size while full-precision 

accuracy is still maintained. 

To further reduce memory usage and computation, binary 

neural networks (BNNs) [21] and ternary neural networks 

(TNNs) [23] have been proposed. BNN only uses +1 and -1 to 

represent data, while TNN uses +1, 0, and -1 for data 

representation. These methods only require 1 or 2 bits to 

represent a weight or input in a CNN, which can significantly 

reduce memory usage. However, due to the limited precision of 

the data representation, the accuracy of BNNs and TNNs is 

lower than that for a CNN with full-precision weights. 

B. CLIP-Q 

CLIP-Q is a CNN quantization algorithm that combines 

pruning and quantization into a single learning framework. The 

joint pruning and quantization help CLIP-Q achieve the 

accuracy of full-precision weights with significantly reduced 

memory usage. The authors in [24][25] showed that a CNN 

with CLIP-Q can preserve the same accuracy as a CNN with 

full-precision weights. 

Figure 2 shows the four steps in CLIP-Q. The first step is 

clipping, where weights that are close to 0 are pruned to 0. The 

parameter P is the proportion of the weights that are pruned to 

0. In Figure 2, P is set to 0.2, indicating that 20% of the positive 

weights will be changed to 0, and 20% of the negative weights 

will be changed to 0 as well. Note that the weights that are 

closer to 0 are selected first. In Figure 2(b), the weights with the 

gray background are the weights that become 0 after clipping.  

 The second step is partitioning. Given a predefined number 

B, this step divides the remaining weights into 2B-1 segments. 

In Figure 2(c), Parameter B is set to 2; hence, the remaining 
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weights are partitioned into three segments. The partitioning 

method used in this work is the linear partitioning method, 

which is the same as in [24][25]. However, other partitioning 

methods can be used to improve accuracy. The blue, green, and 

orange blocks in Figure 2(c) are three segments after 

partitioning. 

 

0.1 0.2 -0.9 1.5 -0.3

1.4 -0.8 -0.7 -1.1 -0.2

-1.3 0.5 -0.1 -0.5 -1.4

0.7 -0.3 -0.8 0.6 -0.1

0.1 -0.4 -0.9 0.1 1.5

 
                          (a) 

0 0.2 -0.9 1.5 -0.3

1.4 -0.8 -0.7 -1.1 -0.2

-1.3 0.5 0 -0.5 -1.4

0.7 -0.3 -0.8 0.6 0

0 -0.4 -0.9 0 1.5

 
(b) 

0 0.2 -0.9 1.5 -0.3

1.4 -0.8 -0.7 -1.1 -0.2

-1.3 0.5 0 -0.5 -1.4

0.7 -0.3 -0.8 0.6 0

0 -0.4 -0.9 0 1.5

 
(c) 

-1.02

0.91

-0.4

 
 

 

(d) 

0 0.91 -1.02 0.91 -0.4

0.91 -1.02 -0.4 -1.02 -0.4

-1.02 0.91 0 -0.4 -1.02

0.91 -0.4 -1.02 0.91 0

0 -0.4 -1.02 0 0.91

 
(e) 

Figure 2. An example of CLIP-Q with 25 weights, P = 0.2, B = 2 (a) Original 
weights (b) Clipping (c) Partitioning (d) Average (e) Quantizing 

 

The third step is averaging and quantizing. First, the average 

of all the numbers in each segment is computed. After that, the 

averages represent all the segment numbers. As shown in 

Figure 2(d), -1.02, -0.4, and 0.91 are the averages of these three 

segments, respectively. Then, the three numbers replace all the 

numbers in the blue, green, and orange blocks, as shown in 

Figure 2(e). Then, these weights are quantized. After CLIP-Q, 

if number 0 is counted, the weights of a CNN layer have only 

2B different numbers. Therefore, these quantized weights can 

be stored in an array with B-bit weight indexes, and these 

indexes are decoded to retrieve the quantized weight during 

computation.  

 
TABLE 1. NETWORK SIZE COMPARISON. CLIP-Q USES EQUAL TO OR 

LESS THAN 8 BITS TO REPRESENT A WEIGHT.  

  Accuracy Network Size 

AlexNet on 

ImageNet 

Uncompressed - 243.9 MB 

CLIP-Q +0.7% 4.8 MB 

GoogLeNet on 
ImageNet 

Uncompressed - 28.0 MB 

CLIP-Q +0.0% 2.8 MB 

ResNet-50 on 

ImageNet 

Uncompressed - 102.5 MB 

CLIP-Q +0.6% 6.7 MB 

 

Table 1 shows the network size and model accuracy of 

AlexNet [2], GoogLeNet [3], and ResNet50 [18] when a model 

is  uncompressed and when a model is processed by CLIP-Q. It 

can be observed that the accuracy of CLIP-Q enabled models 

still matches the accuracy of uncompressed ones with full-

precision weights. In other words, CLIP-Q dramatically 

reduced the storage and computational requirements with 

minimum overhead, and it makes CLIP-Q particularly suitable 

for CNN hardware accelerator designs. 

Although CLIP-Q offers great model compression rate and 

model accuracy, the original algorithm proposed in [24][25] did 

not consider the characteristics of the hardware, and it is not 

straightforward to map a CLIP-Q enabled model to a CNN 

hardware accelerator. The original CLIP-Q algorithm offers a 

high degree of freedom so different parameter B is used for 

different layers (weights in a layer will be quantized to 2B 

segments), and this leads to inefficient hardware design as the 

accelerator will have to select weights from variant length of 

segments. In our design, we set the parameter B to 2 so that 

model weights in all layer are quantized to 22 segments. Also, 

each weight is represented by 8 bits so that the 32-bit memory 

bandwidth can be fully utilized by reading 4 weights in a cycle. 

The software flow, detailed in the next section, determines the 

CNN model and related parameters that will be implemented in 

the CNN hardware accelerator. The details of the CNN 

hardware accelerator are explained in Section IV. 

III.  SOFTWARE AND HARDWARE CODESIGN PLATFORM  

This section first gives an overview of our software and 

hardware codesign platform that contains both the software 

flow and the hardware accelerator. Then, we present how we 

select the neural network model for our hardware accelerator. 

Finally, it describes how we determine the parameters of CLIP-

Q and the bit width of the weights and activations. 

A. Software and Hardware Codesign Platform Overview 

Figure 3 shows the overview of this platform, which contains 

both a software flow and a CNN hardware accelerator. In the 

software flow, we first select a CNN model that is suitable for 

hardware implementation. After that, model information, such 

as the number of layers and the kernel size of each layer, are 

determined. Then, we set up parameters P and B of CLIP-Q, 

and we determine the number of bits required for each weight 

and activation. Finally, the model training is completed on GPU 

servers to obtain the quantized weights.  
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Figure 3. Overview of Software and Hardware Codesign Platform. 

 

Notice that the software flow described in the previous 

paragraph is very flexible. Users can choose a preferred CNN 

models, suitable CLIP-Q parameters, and bit widths for 
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quantization according to their needs. Subsequently, after a 

proper CNN model is selected, and the bit width for weights 

and activation can be determined. The proposed software flow 

compresses the model such that it can be easily mapped to the 

hardware accelerator while maintains its model accuracy. The 

following subsections explain the details of each step in the 

software flow, and Section IV details the CNN hardware 

accelerator. 

B. Neural Network Model Selection 

The first step is to determine a suitable CNN model for the 

hardware implementation. One important factor in determining 

a suitable model is the size of the available on-chip block RAM 

memory (or BRAM). Since the latency and energy required for 

off-chip DRAM memory access are much greater than those for 

on-chip memory access, if the model weights can be stored in 

on-chip BRAM, the accelerator will have lower latency and less 

energy consumption. The implementation platform used in this 

work was Xilinx’s XC7Z0Z0 FPGA. There is only 630KB on-

chip BRAM on this FPGA. When determining a model, we 

prefer to select a model where as many weights as possible can 

be stored in the on-chip memory. Note that based on user 

requirements, different models can be chosen. 

Table 2 compares three model candidates: AlexNet [2], 

VGG7 [29], GoogLenet [3], and Network in Network [30] 

(NIN). The first column is the model’s name, and the second 

column is the model structure. The third column is the number 

of parameters, and the fourth column is the accuracy. “Conv” 

stands for the convolutional layer, and “FC” stands for the fully-

connected layer. As seen from Table 2, NIN has the lowest 

number of weights and accuracy that is comparable to the other 

models. In addition, since there is no fully connected layer in 

the NIN, its structure is simpler than that of other three models. 

Hence, NIN was selected to be implemented in our CNN 

accelerator. 

 
TABLE 2. COMPARISON BETWEEN NEURAL NETWORK MODELS. CIFAR 10 IS 

USED 

Model Structure Parameter number Accuracy 

AlexNet 5 Conv. + 3 FC. ~61M 84.45% 

VGG7 6 Conv. + 1 FC. ~5.5M 86.27% 

GoogLenet 21 Conv. + 1 FC. ~7M 90.69% 

NIN 9 Conv. ~1.2M 90.73% 

 

C. CLIP-Q Setup and Adjustment 

CLIP-Q is a weight pruning and quantization technique that 

is able to maintain accuracy as full-precision weights while 

significantly reducing weight storage. Hence, it is a suitable to 

apply CLIP-Q on a CNN. In the first step, the CNN model is 

selected. In the second step, the parameters used in CLIP-Q are 

determined. There are two parameters: the clipping parameter 

P that indicates that P% of the positive weights will be clipped 

to 0 and the one that indicates that P% of the negative weights 

will be clipped to 0 as well. In this work, the clipping parameter 

P is set to 20 according to [24][25] and our experimental results. 

The second parameter is B, which represents that the weights 

in a layer are divided into 2B segments for further averaging and 

quantizing. It also represents that the number of weights for a 

layer is 2B. To reduce weight storage, we set B to 2 for all layers 

in the CNN model, which is the minimum value of B. However, 

the range of the weight representation can still cover positive 

numbers, 0, and negative numbers.  

D. Weight and Activation Width Determination 

After the parameters of CLIP-Q are determined, the next step 

is to determine how many bits are used to represent a weight 

and activation. In this step, we develop an in-house tool in C++ 

and Python to analyze the accuracy of a 9-layer NIN when 

different bit widths are used for the weights. 

Table 3 shows the accuracy of the 9-layer NIN when 

different bit widths are used to represent a weight. The accuracy 

of the neural network with an 8-bit weight width is almost equal 

to the full precision. Hence, a weight with an 8-bit width is used 

in this work. 

 
TABLE 3. ACCURACY COMPARISON OF DIFFERENT BITS QUANTIZATION OF 

NIN 

Weight bits Cifar-10 accuracy Cifar-100 accuracy 

FULL 90.88% 67.32% 

16 90.84% 67.08% 

10 90.81% 67.23% 

8 89.82% 65.86% 

7 88.54% 61.75% 

6 

5 
4 

85.71% 

83.14% 
80.09% 

60.23% 

59.83% 
57.07% 

Asides from bit width, the position of the decimal point 

directly affects the numerical representation range and 

precision. Thus, we also need to choose an appropriate decimal 

point position.  

Figure 4. Weights distribution of each layer  

 

Figure 4 shows the numerical distribution of the weights of 

each layer in the full-precision CNN in the NIN model. It can 

be seen that the distribution of the weights of the last three 

layers is the widest, ranging approximately between +4 and -4. 

Therefore, the appropriate weight must cover between +4 and -

4 to cover the ranges of the weights. In addition, most of the 

weights in the first three layers of NIN are close to 0. In order 
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to represent the weights of the first three layers clearly, a certain 

number of bits in the fraction is required to represent the 

weights. Based on the observation, we choose an 8-bit data 

format with a 3-bit integer and a 5-bit fraction for the weight. 

The range of the data format is +3.96875 to -4, which is quite 

close to the weight distribution, and the 5-bit fraction is 

adequate to represent the precision required for the weight.  

Finally, we determine the data format for activations. This is 

important because even though the weights are quantized to 8 

bits, if activations between each layer still use a full-precision 

32-bit format, the accelerator still requires complex 

computational circuits and a lot of memory. Therefore, it is 

necessary to determine the bit width and the location of the 

decimal point for activations such that computation and 

memory usage are reduced without significantly sacrificing 

accuracy. Since the bit width of the weights is 8, the bit width 

of the activations is also set to 8 to match the width of the 

weights. Regarding the decimal point location, we train the 

neural network according to the different decimal point 

positions to analyze the accuracy of the neural network for 

different decimal point positions in the activations, as shown in 

Table 4. From Table 4, we can see that the format with 3-bit 

integers and 5-bit fractions has the highest accuracy. Therefore, 

an 8-bit activation format that has 3-bit integers and 5-bit 

fractions was selected. The results are consistent with the 

experimental results in [30]. Therefore, it is appropriate to set 

the bit width of weights and activations between each layer to 8 

bits with a 3-bit integer and a 5-bit fraction. 

 
TABLE 4. ACCURACY COMPARISON OF DIFFERENT 

FRACTION POINT POSITION OF 8-BIT DATA FORMAT IN 

NIN MODEL AND CLIP-Q 

int. bits frac. bits Cifar 10 Cifar 100 

>4 <4 <80% <55% 

4 4 85.53% 61.60% 
3 5 90.73% 67.07% 

2 6 88.09% 63.14% 

1 7 87.32% 61.59% 

IV. CNN HARDWARE ACCELERATOR 

This section first gives an overview of the CNN hardware 

accelerator architecture. Then, it details the design used in the 

accelerator to improve the parallelism. Finally, it details input 

and output channel parallelism used to improve the 

performance and the design of a reconfigurable convolutional 

array that performs convolutions with various kernel sizes. 

A. Accelerator Overview 

Figure 5 shows an overview of the accelerator architecture. 

There are five on-chip BRAMs in the architecture. Param 

BRAM stores various CNN parameters, including the input 

channel size, the output channel size, the kernel size, and the 

stride. Input BRAM and Output BRAM store the input and 

output data of a layer. Weight Index BRAM stores the 2-bit 

weight index for that layer. Clip-Q BRAM stores the quantized 

weights of each layer. The ZYNQ CPU controls the   to transfer 

data between the off-chip DRAM memory and the on-chip 

BRAM through AXI protocol. 

The main controller receives information from the CPU and 

controls the entire execution. The Conv Unit is the circuit that 

performs the convolutional operations. There are four 

convolutional modules (Conv Modules) inside the Conv Unit, 

and each Conv Module contains four reconfigurable 

convolutional arrays (RCAs). Each reconfigurable 

convolutional array has 25 processing elements (PEs). The 

Conv Unit obtains weights through the weight decoder. The 

design of the weight decoder and reconfigurable convolutional 

array are detailed in later subsections.  
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Figure 5. CNN Accelerator Architecture Overview 

 

The execution flow of the CNN hardware accelerator is as 

follows: First, all input and weight data will be placed in the 

off-chip DRAM memory. The ZYNQ CPU controls the DMA 

through the AXI BUS and puts the data into the corresponding 

BRAM. After the data is placed, the CPU controls the controller 

to begin the operations. The Conv Unit performs the 

convolutional operations using the input data and the weights 

after decoding. The quantized activations are 8-bit. The output 

is stored in the output BRAM. After a layer finishes computing, 

the role of the Input BRAM and Output BRAM are exchanged. 

Therefore, each layer only has to read the weights of the layer 

from the off-chip DRAM memory. After the last convolutional 

layer finishes calculating, the DMA moves the results back to 

the off-chip DRAM memory from the output BRAM. 

Section III discusses the fact that after Clip-Q setup and 

adjustment, the weight bit width of each layer is the same. In 

addition, since we limit the number of segments in weight 

partitioning to 4, when designing the weight decoder, we only 

have to use a multiplexer that has 4 inputs and a 2-bit selector 

to decode the weights of each layer. Figure 6 shows the design 

of the weight decoder, which contains four registers and a 

multiplexer. The four registers store the four 8-bit weights of a 

layer. The Weight Index BRAM provides the 2-bit index of the 

weights. Based on the weight index, the decoder can select the 

proper weight that will be used in the Conv Unit. In this way, a 

decoder with small area can be built. Note that it is possible to 

have different weight bit widths for each layer. However, 

supporting different weight bit widths for different layers will 

increase the complexity of the hardware design. 
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B. Input and Output Channel Parallelization 

In order to improve performance, our design improves the 

parallelization of memory access and the computational 

operations in both input and output channels. Figure 7 shows 

the detailed architecture of the Conv Unit shown in Figure 5. 

To speed up the operations, a parallel architecture is designed. 

According to the quantization results in Section III, each input 

data has only 8 bits. Based on the memory bandwidth, a 

standard BRAM has a 32-bit word. Therefore, on-chip BRAM 

can read or write four 8-bit data at the same time.  

To make most use of the input and output memory 

bandwidth, our circuits are designed to improve the 

parallelization of the input and output channel. Figure 8 shows 

the Conv Module design that improves the parallelism. An 

input data image is considered to be 3-dimensional (3D) data 

because it normally has a width, a length, and channels. To 

improve the parallelism, the channel-major layout is used in this 

work to store the 3D input data stored in on-chip BRAM. 

Therefore, the input data of 4 channels in the same position can 

be retrieved in the same cycle.  

w1 w2 0 w3

MUX

CLIP-Q 
BRAM(Weight)

Weight Index 
BRAM

Conv
Unit

2-bit 
index

 
Figure 6. Details of weights decoder 
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Figure 7. Conv Unit Design 

In Figure 8, four convolutional computing arrays execute in 

parallel, for which the results are added through the adder tree. 

After the computational results enter the accumulator (accum), 

they are accumulated and stored in the partial sum BRAM 

(Psum BRAM) in the Conv Module. After the last input channel 

data enters the Conv Module, four 8-bit output activations are 

generated in parallel from the four Conv Modules and 

combined into a 32-bit output to be written into the Output 

BRAM. 

Similarly, the output memory also has the same bandwidth 

as the input memory; that is, one cycle can write four 8-bit 

outputs. In addition, in the convolutional operation, the same 

input data are calculated with different weights to obtain the 

output of different channels. This is also considered in our 

design to improve the parallelism in the output channel. The 

proposed circuit is not shown but is similar to the circuit in the 

previous paragraph, which is implemented in four parts, 

corresponding to four consecutive output channels. After input 

data enters the circuit, four 8-bit outputs are generated from the 

four circuits. Finally, by directly combining the four 8-bit 

outputs into a 32-bit output, the output of four consecutive 

channels can be written to the output memory in one cycle. 

Therefore, the required time for the computation is only one 

fourth of the original time through output channel 

parallelization. 
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Reconf.
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Array
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Output BRAM
 

Figure 8. Conv Module with input and output channel parallelization 

C. Reconfigurable Convolutional array 

Since the NIN model consist of convolutional layers with 

different kernel sizes, to adapt to various kernel sizes during 

convolutional operations, we designed a reconfigurable 

convolutional array that can perform convolutional operations 

for various kernel sizes. 
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Figure 9. Reconfigurable convolutional array. It contains 

25 PEs that are connected in series. 

 

Figure 9 shows the hardware architecture of the 
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reconfigurable convolutional array. Within the reconfigurable 

convolutional array, there are 25 processing elements (PEs) 

where each PE has a multiplier, an adder, and a register. The 

results of multiplication and addition are saved in the register. 

First, each weight is stored in its corresponding PE. Then, the 

same input data is broadcast to each PE and multiplied by the 

weight stored in the corresponding PE. Finally, the 

multiplication results are added to the results from the previous 

PE and are stored in the register. This architecture reduces 

weight movements by reusing weights, in turn reducing energy 

consumption. 

Figure 10 shows how the reconfigurable convolution 

computing array carry out convolution for various kernel sizes. 

When the kernel size is less than 5x5, such as 1x1 or 3x3, a 

kernel will only occupy the same amount of PEs of its size. For 

instance, each 1x1 kernel will occupy a PE in the array so in 

total twenty-five 1x1 kernels can be placed in the 

reconfigurable convolution array.  As for 3x3 kernels, each 

kernel occupies 9 PEs and two 3x3 kernels can be placed in the 

array at a time. Given the kernel size equals to 5x5, it is obvious 

that all PEs are occupied for convolution. When the kernel size 

is greater than 5x5, the system completes the convolution by 

dividing the operations into several reconfigurable 

convolutional arrays, where each array performs a 

convolutional operation on up to 25 inputs. Take 7x7 kernel size 

as an example, as shown in Figure 10. The kernel can be split 

into two smaller kernels, whose sizes are 25 and 24, 

respectively. After using the two kernels to perform the 

convolutional operation, the results are added together to 

complete the convolutional operation for kernel sizes larger 

than 5x5. Hence, although there are only 25 PEs in the proposed 

reconfigurable convolutional array, the reconfigurable 

convolutional array can perform convolutional operations for 

kernel sizes larger than 5x5.  

 

        
(a)1x1 

   
(b) 3x3 

 

 
(c) 7x7=25+24 

 

Figure 10. Reconfigurable convolutional array for different kernel sizes 

 

To take advantage of data reuse, the sliding window is 

moving downwards, so the partial sum of the previous 

operation can be reused. One row of the kernel data can 

generate a valid output. Taking a 3x3 kernel size as an example, 

one output is generated after every three input data values enter 

the array. In other words, an average of three clock cycles will 

have an output. According to the row size of the kernel, the 

number of cycles needed to generate an output can be 

determined. 

V. EXPERIMENTAL SETUP AND RESULTS  

This section first introduces the experimental environment. 

Then, it details the accuracy and performance comparison. 

A. Experimental Setup 

The neural network is built with Python, and CLIP-Q is used 

to quantize model weights, where P is set to 20%, and B is set 

to 2. The bit width of the weights and activations are 8-bit, and 

the computational data are quantized to 8 bits. Therefore, during 

CNN inference, the data format in the software and hardware 

computation are equivalent, and the accuracies of the inference 

are also the same. After training, the parameters with the highest 

accuracy are saved, i.e., the model’s weight and bias are saved 

into a file to facilitate the hardware implementation. 

This design is implemented on the PYNQ-Z2 FPGA 

development board, where the FPGA chip is XC7Z020. The 

design is implemented in Verilog, and the development 

software is Vivado (v2018.3). The hardware resources utilized 

in the system are shown in Table 5. Due to the limited number 

of DSPs, the 8-bit multipliers are synthesized using LUT. 

Therefore, the utilization rate of LUT is relatively high. The 

DSP is mainly used by the Controller circuit to calculate the 

data address. Compared to DSP, implementing 8-bit multipliers 

with LUT can reduce energy consumption. The input BRAM 

and output BRAM, which contain the input and output data for 

a layer, account for a large part of the BRAM usage. 

 
TABLE 5. RESOURCE UTILIZATION ON XC7Z020 

 LUT LUTRAM FF DSP BRAM 

Available 53,200 17,400 106,400 220 140 

Used 42,416 521 22,498 5 120 

Percent (%) 79.73 2.99 21.14 2.27 85.71 

 

 
TABLE 6. ACCURACY COMPARISON OF DIFFERENT 

QUANTIZATION ALGORITHMS IN THE NIN MODEL 

quantization input bits weight bits Cifar 10 Cifar 100 

Full 32 32 90.88% 67.32% 

8-bit 8 8 89.82% 65.86% 

TNN 2 2 83.74% 53.02% 

BNN 1 1 81.52% 40.36% 
8-bit CLIP-Q 8 8 (only 4 

weights) 

90.73% 67.07% 

B. Accuracy Comparison 

After quantization and the CLIP-Q fixed-segment 

adjustments, there are only four 8-bit weights per layer, which 
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conserves a considerable amount of storage. However, it is 

important the accuracy of the model is maintained. If the 

accuracy can be maintained, the proposed CLIP-Q is suitable 

for quantization implemented in the CNN accelerator. Table 6 

compares the Cifar-10 and Cifar-100 accuracy of the models 

using different quantization methods. All the accuracies in 

Table 6 are generated by experiments in the 9-layer NIN model. 

FULL means that the 32-bit float full precision data format is 

used. 8-bit represents the input, and weight data are quantized 

to 8-bit precision. TNN means that all data are represented by 

+1, 0, -1, and BNN only uses +1 and -1 to represent data. 

It can be seen from Table 6 that although TNN and BNN save 

a lot of storage space for weights and inputs, the accuracy is 

reduced. Especially in the Cifar-100, the accuracy is 

significantly different from the full precision. The accuracy of 

the 8-bit precision is closer to the full precision, but there is still 

a 2% drop in the Cifar-100 test data. However, the adjusted 8-

bit CLIP-Q has almost the same accuracy as the full-precision, 

and only four 8-bit weights are needed. The proposed CLIP-Q 

significantly reduces storage space and can achieve almost the 

same accuracy as full precision. 

C. Performance Comparison 

Table 7 shows the required cycles to read input feature maps 

for various kernel sizes in the reconfigurable convolution 

design. In the proposed 5x5 reconfigurable convolutional array, 

as long as the kernel size is not higher than 25(=5x5), it is only 

necessary to read the input feature map once to complete the 

convolution. For convolution kernel sizes higher than 5x5, the 

kernel is divided into smaller kernels, each of which is equal to 

or smaller than 25. Therefore, the input access time of large-

size kernels is equal to the kernel size divided by 25. Compared 

to [32], where convolutions of different kernel sizes were 

completed using a 3x3 kernel size, our reconfigurable design 

reduces the input data access time. Thus, it can also complete 

convolution faster than was the case in [32]. 

 
TABLE 7. COMPARISON OF INPUT FEATURE MAP 

READING TIMES IN DIFFERENT KERNEL SIZE 

kernel size [32] ours 

1x1 1 1 

3x3 1 1 
5x5 4 1 

7x7 9 2 

9x9 9 4 
11x11 16 5 

 
Table 8. COMPARISON BETWEEN DIFFERENT IMPLEMENTATIONS 
ON FPGA 

 [33] [34]  [32] ours 

Platform Virtex 7 

VX485t 

Virtex 7 

VX485t 

Zynq 

XC7Z020 

Zynq 

XC7Z020 

Clock 100Mhz 156Mhz 214Mhz 111Mhz 

Data format 32-bit float 16-bit fixed 8-bit fixed 8-bit fixed 

Power(W) 18.61 30.2 3.5 2.147 

GOP/S 61.62 565.9 84.3 91.1 

GOP/S/W 3.31 22.15 24.1 42.4 

 

Table 8 shows a comparison between the proposed design 

and related work. Because the proposed 5x5 convolutional 

array improves the input and output channel parallelism, the 

overall GOP/S performance was increased. Furthermore, since 

the multipliers were synthesized using LUT, the power 

consumption was less than when using DSP. Also, we used 

fewer flip-flops on the convolution circuit, which also reduced 

the power consumption. According to Table 8, our CNN 

accelerator’s GOP/S/W were relatively higher than those in 

other work, which means the proposed design had higher 

energy efficiency. 

VI. RELATED WORK 

In this section, we discuss previously designed FPGA-based 

CNN accelerator. Angel-Eye [32] proposed a software-

hardware codesign for embedded CNN applications and used a 

3x3 convolver to handle different computational workloads of 

various kernel size; however, the utilization rate of its 3x3 

convolvers is only 1/9 when dealing with 1×1 kernel. Instead of 

designing the accelerator directly. High-level synthesis was 

used to generate the design with the help of roofline model in 

[33]. It measured the compute and memory requirements for 

each layer of a CNN model and came up with suitable 

architectures that efficiently utilize the memory bandwidth. 

However, it mapped full precision CNN models directly to 

FPGAs without considering the underlying hardware costs, and 

common strategies such as data quantization and model pruning 

were not applied. An end-to-end FPGA-based CNN accelerator 

aiming for high throughput and high resource utilization was 

proposed in [34]. While different layers have different 

compute-to-memory ratio, it proposed a batch-based method 

for fully connected layer to better utilize memory bandwidth. It 

adopted 16-bit data quantization for input and weight data; 

however, its models were not pruned and was unfriendly to 

resource-limited FPGAs.  

VII. CONCLUSIONS 

CLIP-Q significantly reduces the CNN weight storage 

requirement while also maintaining accuracy. This feature 

makes CLIP-Q suitable for a CNN. However, the current CLIP-

Q approach did not consider the hardware characteristics and 

the method for applying CLIP-Q when designing a CNN 

hardware accelerator was not straightforward. In this work, we 

propose a software-hardware codesign platform that includes 

both the software flow and the hardware accelerator. The 

software flow obtained neural model parameters suitable for 

hardware implementation. We also designed a CNN hardware 

accelerator. The accelerator executed convolutions with various 

kernel sizes through 5x5 reconfigurable convolutional arrays 

and improved parallelism in both the input and output channels. 

The experimental results show that the proposed CNN 

accelerator has higher energy efficiency than the state-of-the art 

alternatives. 
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