
 1

Abstract—Convolutional neural networks (CNNs) have

achieved tremendous success in the computer vision domain
recently. The pursue for better model accuracy drives the model

size and the storage requirements of CNNs as well as the

computational complexity. Therefore, Compression Learning by

InParallel Pruning-Quantization (CLIP-Q) was proposed to

reduce a vast amount of weight storage requirements by using a

few quantized segments to represent all weights in a CNN layer.

Among various quantization strategies, CLIP-Q is suitable for

hardware accelerators because it reduces model size significantly

while maintaining the full-precision model accuracy. However, the

current CLIP-Q approach did not consider the hardware

characteristics and it is not straightforward when mapped to a

CNN hardware accelerator. In this work, we propose a software-

hardware codesign platform that includes a modified version of

CLIP-Q algorithm and a hardware accelerator, which consists of

5x5 reconfigurable convolutional arrays with input and output

channel parallelization. Additionally, the proposed CNN

accelerator maintains the same accuracy of a full-precision CNN

in Cifar-10 and Cifar-100 datasets.

Index Terms—Convolutional Neural Network, CLIP-Q,

Accuracy, Energy, Hardware Implementation

I. INTRODUCTION

n recent years, convolutional neural networks (CNNs) have

been widely used in many applications, such as image

classification [1], [2], [3], object detection [4], [5], [6], [7],

semantic segmentation, [8], [9], [10], [11], visual question

answering, [12], [13], [14], [15], speech recognition [16], and

self-driving cars [17]. CNN achieves higher model accuracy

than traditional image processing methods in the above

applications given enough training data.

However, to achieve better accuracy, the number of layers as

well as the complexity of CNN models has increased

significantly. The increased model complexity leads to an

exponentially growing computational time of a CNN. For

example, CNN models with more than 100 layers, such as

ResNet101[18] and DenseNet121 [19], require a considerable

amount of computing resources and memory space. In order to

use computing resources and memory space more efficiently,

quantization, which simplifies and optimizes the CNN model,

has become a popular research field.

Quantization [31][35][37] constrains a data representation to

a smaller set, for example, using an 8-bit fixed point format to

represent a 32-bit floating point format. Because fewer bits are

used to represent a number, quantization greatly reduces storage

requirements. For example, the authors in [20] use a 16-bit and

8-bit fixed point format to represent data. Binary neural

networks (BNNs) [21][22] and ternary neural networks (TNNs)

[23] represent data in a CNN with less than two bits, which

reduces the memory space requirement for more than sixteen

fold.

Recently, many attempts have been made to deal with the

model sparsity through model compression [35][36][37], and

Compression Learning by InParallel Pruning-Quantization

(CLIP-Q) has been proposed in [24][25]. It quantizes the full-

precision weights by combining pruning and weight

quantization into a single learning framework during CNN

model training. Weight fine-tuning is also applied after model

training is completed. Full-precision weights are discarded

while quantized weights are kept. There are significantly fewer

quantized weights than full-precision weights since these

weights are compressed and stored in a sparse encoding format.

Joint pruning and quantization help CLIP-Q achieve near-zero

accuracy drop compared with full-precision models.

Meanwhile, in order to accelerate CNN computation, many

hardware CNN accelerators have been proposed. Instead of

using a full-precision format, model weights, activation, and/or

input are quantized. Because the computing units in the

accelerators are designed according to the quantized data, the

hardware CNN accelerator can effectively accelerate CNN

computation. For example, if BNN only uses +1 and -1 to

represent inputs and weights, XNOR gates can be used to

replace the multiplication in a BNN. The authors in [26]

designed a highly parallelized hardware CNN accelerator based

on a BNN using XNOR for multiplication. The authors in [27]

proposed a BNN accelerator, in which all convolutional

operations are binarized and unified, to achieve better

performance and energy efficient. However, for BNN

accelerators, due to the limitation related to data precision when

using these weights, these CNN hardware accelerators could

not achieve the accuracy of full-precision weights.

CLIP-Q quantizes CNN weights and maintains full-precision

accuracy. Meanwhile, due to high computational complexity, it

An Efficient Implementation of Convolutional

Neural Network with CLIP-Q Quantization on

FPGA

This work was supported in part by the Ministry of Science and Technology

under Grant 110-2221-E-006-084-MY3 and Grant 109-2628-E-006-012-MY3;
and in part by the Intelligent Manufacturing Research Center From the Featured
Areas Research Center Program by the Ministry of Education, Taiwan (ROC).

Wei Cheng, Ing-Chao Lin, Senior Member, IEEE, Yun-Yang Shih

I

 2

−

is a trend to design a hardware accelerator to accelerate CNNs.

However, CLIP-Q in [24][25] did not consider the hardware

characteristics, and the method used to apply CLIP-Q when

designing a CNN hardware accelerator is not straightforward.

In order to design a CNN accelerator with CLIP-Q, we thus

propose a software-hardware codesign platform that includes

both the software flow and a hardware accelerator. Based on the

results obtained from the software flow, we design an efficient

CNN hardware accelerator. The contributions of this paper can

be summarized as follows:

• We propose a software-hardware codesign platform

that includes both a software flow and a hardware

accelerator. In the software flow, the parameters of

CLIP-Q are determined. A CNN with the proposed

CLIP-Q setup and adjustment only requires four 8-bit

weights for a layer and 8 bits for activation and still has

the same accuracy as full-precision CNN in Cifar-10

and Cifar-100.

• In the hardware accelerator, we propose a simple but

effective weight decoder to retrieve weights during

convolutional operations.

• We implement a hardware CNN accelerator with a

parallel architecture and design a reconfigurable

convolutional array that performs convolutional

operations with various kernel sizes.

• The simulation results show that the proposed CNN

hardware accelerator achieves better Giga Operations

Per Second Per Watt (GOP/S/W) than the state-of-the

art approach.

The rest of the paper is organized as follows: Section II

introduce the background, and Section III introduces the

software-hardware codesign platform and the software flow on

the platform. Section IV details the architecture of the CNN

hardware accelerator. Section V introduces the experimental

results, and Section VI concludes the paper.

II. BACKGROUND

A. CNN and Quantization NN

CNN has been widely used in many applications, including

image classification [1], [2], [3] , object detection [4], [5], [6],

[7], semantic segmentation [8], [9], [10], [11], visual question

answering [12], [13], [14], [15], speech recognition [16], and

self-driving cars [17]. CNN is mainly composed of

convolutional, pooling and fully connected layers, as shown in

Figure 1. CNN performs feature extractions through multiple

convolutional layers and outperforms many current image

processing methods.

However, with the increasing number of layers and model

complexity in CNN, CNN requires considerable memory and

computing resources. As shown in Figure 1, with regard to

memory usage, the weights of each convolutional layer require

K*K*IC*OC*Wsize bytes of memory space, where K*K is the

kernel size; IC is the input channel; Oc is output channel, and

Wsize is the number of bytes for each weight. With regard to

computations, if additions are not counted, each convolutional

layer still requires K*K*IC*OC*OW*OH multiplications, where

OW is the output width, and OH is the output height. The larger

the input and output channels, the more memory usage and

computation are required, which leads to increased latency and

energy consumption. Therefore, reducing memory usage and

computation requirement to accelerate CNN has attracted

extensive attention.

convolution pooling fully
connected

Boat(0.11)
Car(0.23)

Truck(0.65)
Cat(0.01)

convolution

..

K
KIc

Ic OcOc

Ow

Oh

Figure 1. CNN overview and details of a convolutional layer

In a CNN, weight quantization is a widely used technique to

reduce memory usage and computation demands. In weight

quantization, weights are constrained to a set of discrete values,

allowing the weights to be represented using fewer bits.

Research in quantization includes [20] and [28]. These studies

quantize data into 16-bit or 8-bit fixed-point formats using

flexible quantization algorithms. Therefore, memory usage is

only 1/2 to 1/4 that of the original size while full-precision

accuracy is still maintained.

To further reduce memory usage and computation, binary

neural networks (BNNs) [21] and ternary neural networks

(TNNs) [23] have been proposed. BNN only uses +1 and -1 to

represent data, while TNN uses +1, 0, and -1 for data

representation. These methods only require 1 or 2 bits to

represent a weight or input in a CNN, which can significantly

reduce memory usage. However, due to the limited precision of

the data representation, the accuracy of BNNs and TNNs is

lower than that for a CNN with full-precision weights.

B. CLIP-Q

CLIP-Q is a CNN quantization algorithm that combines

pruning and quantization into a single learning framework. The

joint pruning and quantization help CLIP-Q achieve the

accuracy of full-precision weights with significantly reduced

memory usage. The authors in [24][25] showed that a CNN

with CLIP-Q can preserve the same accuracy as a CNN with

full-precision weights.

Figure 2 shows the four steps in CLIP-Q. The first step is

clipping, where weights that are close to 0 are pruned to 0. The

parameter P is the proportion of the weights that are pruned to

0. In Figure 2, P is set to 0.2, indicating that 20% of the positive

weights will be changed to 0, and 20% of the negative weights

will be changed to 0 as well. Note that the weights that are

closer to 0 are selected first. In Figure 2(b), the weights with the

gray background are the weights that become 0 after clipping.

 The second step is partitioning. Given a predefined number

B, this step divides the remaining weights into 2B-1 segments.

In Figure 2(c), Parameter B is set to 2; hence, the remaining

 3

weights are partitioned into three segments. The partitioning

method used in this work is the linear partitioning method,

which is the same as in [24][25]. However, other partitioning

methods can be used to improve accuracy. The blue, green, and

orange blocks in Figure 2(c) are three segments after

partitioning.

0.1 0.2 -0.9 1.5 -0.3

1.4 -0.8 -0.7 -1.1 -0.2

-1.3 0.5 -0.1 -0.5 -1.4

0.7 -0.3 -0.8 0.6 -0.1

0.1 -0.4 -0.9 0.1 1.5

 (a)

0 0.2 -0.9 1.5 -0.3

1.4 -0.8 -0.7 -1.1 -0.2

-1.3 0.5 0 -0.5 -1.4

0.7 -0.3 -0.8 0.6 0

0 -0.4 -0.9 0 1.5

(b)

0 0.2 -0.9 1.5 -0.3

1.4 -0.8 -0.7 -1.1 -0.2

-1.3 0.5 0 -0.5 -1.4

0.7 -0.3 -0.8 0.6 0

0 -0.4 -0.9 0 1.5

(c)

-1.02

0.91

-0.4

(d)

0 0.91 -1.02 0.91 -0.4

0.91 -1.02 -0.4 -1.02 -0.4

-1.02 0.91 0 -0.4 -1.02

0.91 -0.4 -1.02 0.91 0

0 -0.4 -1.02 0 0.91

(e)

Figure 2. An example of CLIP-Q with 25 weights, P = 0.2, B = 2 (a) Original
weights (b) Clipping (c) Partitioning (d) Average (e) Quantizing

The third step is averaging and quantizing. First, the average

of all the numbers in each segment is computed. After that, the

averages represent all the segment numbers. As shown in

Figure 2(d), -1.02, -0.4, and 0.91 are the averages of these three

segments, respectively. Then, the three numbers replace all the

numbers in the blue, green, and orange blocks, as shown in

Figure 2(e). Then, these weights are quantized. After CLIP-Q,

if number 0 is counted, the weights of a CNN layer have only

2B different numbers. Therefore, these quantized weights can

be stored in an array with B-bit weight indexes, and these

indexes are decoded to retrieve the quantized weight during

computation.

TABLE 1. NETWORK SIZE COMPARISON. CLIP-Q USES EQUAL TO OR

LESS THAN 8 BITS TO REPRESENT A WEIGHT.

 Accuracy Network Size

AlexNet on

ImageNet

Uncompressed - 243.9 MB

CLIP-Q +0.7% 4.8 MB

GoogLeNet on
ImageNet

Uncompressed - 28.0 MB

CLIP-Q +0.0% 2.8 MB

ResNet-50 on

ImageNet

Uncompressed - 102.5 MB

CLIP-Q +0.6% 6.7 MB

Table 1 shows the network size and model accuracy of

AlexNet [2], GoogLeNet [3], and ResNet50 [18] when a model

is uncompressed and when a model is processed by CLIP-Q. It

can be observed that the accuracy of CLIP-Q enabled models

still matches the accuracy of uncompressed ones with full-

precision weights. In other words, CLIP-Q dramatically

reduced the storage and computational requirements with

minimum overhead, and it makes CLIP-Q particularly suitable

for CNN hardware accelerator designs.

Although CLIP-Q offers great model compression rate and

model accuracy, the original algorithm proposed in [24][25] did

not consider the characteristics of the hardware, and it is not

straightforward to map a CLIP-Q enabled model to a CNN

hardware accelerator. The original CLIP-Q algorithm offers a

high degree of freedom so different parameter B is used for

different layers (weights in a layer will be quantized to 2B

segments), and this leads to inefficient hardware design as the

accelerator will have to select weights from variant length of

segments. In our design, we set the parameter B to 2 so that

model weights in all layer are quantized to 22 segments. Also,

each weight is represented by 8 bits so that the 32-bit memory

bandwidth can be fully utilized by reading 4 weights in a cycle.

The software flow, detailed in the next section, determines the

CNN model and related parameters that will be implemented in

the CNN hardware accelerator. The details of the CNN

hardware accelerator are explained in Section IV.

III. SOFTWARE AND HARDWARE CODESIGN PLATFORM

This section first gives an overview of our software and

hardware codesign platform that contains both the software

flow and the hardware accelerator. Then, we present how we

select the neural network model for our hardware accelerator.

Finally, it describes how we determine the parameters of CLIP-

Q and the bit width of the weights and activations.

A. Software and Hardware Codesign Platform Overview

Figure 3 shows the overview of this platform, which contains

both a software flow and a CNN hardware accelerator. In the

software flow, we first select a CNN model that is suitable for

hardware implementation. After that, model information, such

as the number of layers and the kernel size of each layer, are

determined. Then, we set up parameters P and B of CLIP-Q,

and we determine the number of bits required for each weight

and activation. Finally, the model training is completed on GPU

servers to obtain the quantized weights.

Model selection
Clip-Q Setup

and Adjustment

Software Flow

Model
information

CNN Hardware
Accelerator

Parameters

Input
Data

Output
result

Weight and activation
width Determination &

Model Training

Figure 3. Overview of Software and Hardware Codesign Platform.

Notice that the software flow described in the previous

paragraph is very flexible. Users can choose a preferred CNN

models, suitable CLIP-Q parameters, and bit widths for

 4

quantization according to their needs. Subsequently, after a

proper CNN model is selected, and the bit width for weights

and activation can be determined. The proposed software flow

compresses the model such that it can be easily mapped to the

hardware accelerator while maintains its model accuracy. The

following subsections explain the details of each step in the

software flow, and Section IV details the CNN hardware

accelerator.

B. Neural Network Model Selection

The first step is to determine a suitable CNN model for the

hardware implementation. One important factor in determining

a suitable model is the size of the available on-chip block RAM

memory (or BRAM). Since the latency and energy required for

off-chip DRAM memory access are much greater than those for

on-chip memory access, if the model weights can be stored in

on-chip BRAM, the accelerator will have lower latency and less

energy consumption. The implementation platform used in this

work was Xilinx’s XC7Z0Z0 FPGA. There is only 630KB on-

chip BRAM on this FPGA. When determining a model, we

prefer to select a model where as many weights as possible can

be stored in the on-chip memory. Note that based on user

requirements, different models can be chosen.

Table 2 compares three model candidates: AlexNet [2],

VGG7 [29], GoogLenet [3], and Network in Network [30]

(NIN). The first column is the model’s name, and the second

column is the model structure. The third column is the number

of parameters, and the fourth column is the accuracy. “Conv”

stands for the convolutional layer, and “FC” stands for the fully-

connected layer. As seen from Table 2, NIN has the lowest

number of weights and accuracy that is comparable to the other

models. In addition, since there is no fully connected layer in

the NIN, its structure is simpler than that of other three models.

Hence, NIN was selected to be implemented in our CNN

accelerator.

TABLE 2. COMPARISON BETWEEN NEURAL NETWORK MODELS. CIFAR 10 IS

USED

Model Structure Parameter number Accuracy

AlexNet 5 Conv. + 3 FC. ~61M 84.45%

VGG7 6 Conv. + 1 FC. ~5.5M 86.27%

GoogLenet 21 Conv. + 1 FC. ~7M 90.69%

NIN 9 Conv. ~1.2M 90.73%

C. CLIP-Q Setup and Adjustment

CLIP-Q is a weight pruning and quantization technique that

is able to maintain accuracy as full-precision weights while

significantly reducing weight storage. Hence, it is a suitable to

apply CLIP-Q on a CNN. In the first step, the CNN model is

selected. In the second step, the parameters used in CLIP-Q are

determined. There are two parameters: the clipping parameter

P that indicates that P% of the positive weights will be clipped

to 0 and the one that indicates that P% of the negative weights

will be clipped to 0 as well. In this work, the clipping parameter

P is set to 20 according to [24][25] and our experimental results.

The second parameter is B, which represents that the weights

in a layer are divided into 2B segments for further averaging and

quantizing. It also represents that the number of weights for a

layer is 2B. To reduce weight storage, we set B to 2 for all layers

in the CNN model, which is the minimum value of B. However,

the range of the weight representation can still cover positive

numbers, 0, and negative numbers.

D. Weight and Activation Width Determination

After the parameters of CLIP-Q are determined, the next step

is to determine how many bits are used to represent a weight

and activation. In this step, we develop an in-house tool in C++

and Python to analyze the accuracy of a 9-layer NIN when

different bit widths are used for the weights.

Table 3 shows the accuracy of the 9-layer NIN when

different bit widths are used to represent a weight. The accuracy

of the neural network with an 8-bit weight width is almost equal

to the full precision. Hence, a weight with an 8-bit width is used

in this work.

TABLE 3. ACCURACY COMPARISON OF DIFFERENT BITS QUANTIZATION OF

NIN

Weight bits Cifar-10 accuracy Cifar-100 accuracy

FULL 90.88% 67.32%

16 90.84% 67.08%

10 90.81% 67.23%

8 89.82% 65.86%

7 88.54% 61.75%

6

5
4

85.71%

83.14%
80.09%

60.23%

59.83%
57.07%

Asides from bit width, the position of the decimal point

directly affects the numerical representation range and

precision. Thus, we also need to choose an appropriate decimal

point position.

Figure 4. Weights distribution of each layer

Figure 4 shows the numerical distribution of the weights of

each layer in the full-precision CNN in the NIN model. It can

be seen that the distribution of the weights of the last three

layers is the widest, ranging approximately between +4 and -4.

Therefore, the appropriate weight must cover between +4 and -

4 to cover the ranges of the weights. In addition, most of the

weights in the first three layers of NIN are close to 0. In order

 5

to represent the weights of the first three layers clearly, a certain

number of bits in the fraction is required to represent the

weights. Based on the observation, we choose an 8-bit data

format with a 3-bit integer and a 5-bit fraction for the weight.

The range of the data format is +3.96875 to -4, which is quite

close to the weight distribution, and the 5-bit fraction is

adequate to represent the precision required for the weight.

Finally, we determine the data format for activations. This is

important because even though the weights are quantized to 8

bits, if activations between each layer still use a full-precision

32-bit format, the accelerator still requires complex

computational circuits and a lot of memory. Therefore, it is

necessary to determine the bit width and the location of the

decimal point for activations such that computation and

memory usage are reduced without significantly sacrificing

accuracy. Since the bit width of the weights is 8, the bit width

of the activations is also set to 8 to match the width of the

weights. Regarding the decimal point location, we train the

neural network according to the different decimal point

positions to analyze the accuracy of the neural network for

different decimal point positions in the activations, as shown in

Table 4. From Table 4, we can see that the format with 3-bit

integers and 5-bit fractions has the highest accuracy. Therefore,

an 8-bit activation format that has 3-bit integers and 5-bit

fractions was selected. The results are consistent with the

experimental results in [30]. Therefore, it is appropriate to set

the bit width of weights and activations between each layer to 8

bits with a 3-bit integer and a 5-bit fraction.

TABLE 4. ACCURACY COMPARISON OF DIFFERENT

FRACTION POINT POSITION OF 8-BIT DATA FORMAT IN

NIN MODEL AND CLIP-Q

int. bits frac. bits Cifar 10 Cifar 100

>4 <4 <80% <55%

4 4 85.53% 61.60%
3 5 90.73% 67.07%

2 6 88.09% 63.14%

1 7 87.32% 61.59%

IV. CNN HARDWARE ACCELERATOR

This section first gives an overview of the CNN hardware

accelerator architecture. Then, it details the design used in the

accelerator to improve the parallelism. Finally, it details input

and output channel parallelism used to improve the

performance and the design of a reconfigurable convolutional

array that performs convolutions with various kernel sizes.

A. Accelerator Overview

Figure 5 shows an overview of the accelerator architecture.

There are five on-chip BRAMs in the architecture. Param

BRAM stores various CNN parameters, including the input

channel size, the output channel size, the kernel size, and the

stride. Input BRAM and Output BRAM store the input and

output data of a layer. Weight Index BRAM stores the 2-bit

weight index for that layer. Clip-Q BRAM stores the quantized

weights of each layer. The ZYNQ CPU controls the to transfer

data between the off-chip DRAM memory and the on-chip

BRAM through AXI protocol.

The main controller receives information from the CPU and

controls the entire execution. The Conv Unit is the circuit that

performs the convolutional operations. There are four

convolutional modules (Conv Modules) inside the Conv Unit,

and each Conv Module contains four reconfigurable

convolutional arrays (RCAs). Each reconfigurable

convolutional array has 25 processing elements (PEs). The

Conv Unit obtains weights through the weight decoder. The

design of the weight decoder and reconfigurable convolutional

array are detailed in later subsections.

Conv
Unit

Input
BRAM

Output
BRAM

Weight BRAM

CLIP-Q BRAM

DMA
ZYNQ
CPU

AXI_BUS

Param BRAM

Off-chip
memory

Weight
Decoder

Main
Controller

Figure 5. CNN Accelerator Architecture Overview

The execution flow of the CNN hardware accelerator is as

follows: First, all input and weight data will be placed in the

off-chip DRAM memory. The ZYNQ CPU controls the DMA

through the AXI BUS and puts the data into the corresponding

BRAM. After the data is placed, the CPU controls the controller

to begin the operations. The Conv Unit performs the

convolutional operations using the input data and the weights

after decoding. The quantized activations are 8-bit. The output

is stored in the output BRAM. After a layer finishes computing,

the role of the Input BRAM and Output BRAM are exchanged.

Therefore, each layer only has to read the weights of the layer

from the off-chip DRAM memory. After the last convolutional

layer finishes calculating, the DMA moves the results back to

the off-chip DRAM memory from the output BRAM.

Section III discusses the fact that after Clip-Q setup and

adjustment, the weight bit width of each layer is the same. In

addition, since we limit the number of segments in weight

partitioning to 4, when designing the weight decoder, we only

have to use a multiplexer that has 4 inputs and a 2-bit selector

to decode the weights of each layer. Figure 6 shows the design

of the weight decoder, which contains four registers and a

multiplexer. The four registers store the four 8-bit weights of a

layer. The Weight Index BRAM provides the 2-bit index of the

weights. Based on the weight index, the decoder can select the

proper weight that will be used in the Conv Unit. In this way, a

decoder with small area can be built. Note that it is possible to

have different weight bit widths for each layer. However,

supporting different weight bit widths for different layers will

increase the complexity of the hardware design.

 6

B. Input and Output Channel Parallelization

In order to improve performance, our design improves the

parallelization of memory access and the computational

operations in both input and output channels. Figure 7 shows

the detailed architecture of the Conv Unit shown in Figure 5.

To speed up the operations, a parallel architecture is designed.

According to the quantization results in Section III, each input

data has only 8 bits. Based on the memory bandwidth, a

standard BRAM has a 32-bit word. Therefore, on-chip BRAM

can read or write four 8-bit data at the same time.

To make most use of the input and output memory

bandwidth, our circuits are designed to improve the

parallelization of the input and output channel. Figure 8 shows

the Conv Module design that improves the parallelism. An

input data image is considered to be 3-dimensional (3D) data

because it normally has a width, a length, and channels. To

improve the parallelism, the channel-major layout is used in this

work to store the 3D input data stored in on-chip BRAM.

Therefore, the input data of 4 channels in the same position can

be retrieved in the same cycle.

w1 w2 0 w3

MUX

CLIP-Q
BRAM(Weight)

Weight Index
BRAM

Conv
Unit

2-bit
index

Figure 6. Details of weights decoder

Input
Bram

Conv ModlueConv ModuleConv ModuleConv Module

out_ch = 0

Output
Bram

out_ch = 1out_ch = 2out_ch = 3

Conv Unit

Figure 7. Conv Unit Design

In Figure 8, four convolutional computing arrays execute in

parallel, for which the results are added through the adder tree.

After the computational results enter the accumulator (accum),

they are accumulated and stored in the partial sum BRAM

(Psum BRAM) in the Conv Module. After the last input channel

data enters the Conv Module, four 8-bit output activations are

generated in parallel from the four Conv Modules and

combined into a 32-bit output to be written into the Output

BRAM.

Similarly, the output memory also has the same bandwidth

as the input memory; that is, one cycle can write four 8-bit

outputs. In addition, in the convolutional operation, the same

input data are calculated with different weights to obtain the

output of different channels. This is also considered in our

design to improve the parallelism in the output channel. The

proposed circuit is not shown but is similar to the circuit in the

previous paragraph, which is implemented in four parts,

corresponding to four consecutive output channels. After input

data enters the circuit, four 8-bit outputs are generated from the

four circuits. Finally, by directly combining the four 8-bit

outputs into a 32-bit output, the output of four consecutive

channels can be written to the output memory in one cycle.

Therefore, the required time for the computation is only one

fourth of the original time through output channel

parallelization.

Reconf.
Conv
Array

Reconf.
Conv
Array

Reconf.
Conv
Array

Reconf.
Conv
Array

accum
Psum
Bram

in_ch = 3 in_ch = 2 in_ch = 1 in_ch = 0

Output BRAM

Figure 8. Conv Module with input and output channel parallelization

C. Reconfigurable Convolutional array

Since the NIN model consist of convolutional layers with

different kernel sizes, to adapt to various kernel sizes during

convolutional operations, we designed a reconfigurable

convolutional array that can perform convolutional operations

for various kernel sizes.

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

W

R
e
g

Figure 9. Reconfigurable convolutional array. It contains

25 PEs that are connected in series.

Figure 9 shows the hardware architecture of the

 7

reconfigurable convolutional array. Within the reconfigurable

convolutional array, there are 25 processing elements (PEs)

where each PE has a multiplier, an adder, and a register. The

results of multiplication and addition are saved in the register.

First, each weight is stored in its corresponding PE. Then, the

same input data is broadcast to each PE and multiplied by the

weight stored in the corresponding PE. Finally, the

multiplication results are added to the results from the previous

PE and are stored in the register. This architecture reduces

weight movements by reusing weights, in turn reducing energy

consumption.

Figure 10 shows how the reconfigurable convolution

computing array carry out convolution for various kernel sizes.

When the kernel size is less than 5x5, such as 1x1 or 3x3, a

kernel will only occupy the same amount of PEs of its size. For

instance, each 1x1 kernel will occupy a PE in the array so in

total twenty-five 1x1 kernels can be placed in the

reconfigurable convolution array. As for 3x3 kernels, each

kernel occupies 9 PEs and two 3x3 kernels can be placed in the

array at a time. Given the kernel size equals to 5x5, it is obvious

that all PEs are occupied for convolution. When the kernel size

is greater than 5x5, the system completes the convolution by

dividing the operations into several reconfigurable

convolutional arrays, where each array performs a

convolutional operation on up to 25 inputs. Take 7x7 kernel size

as an example, as shown in Figure 10. The kernel can be split

into two smaller kernels, whose sizes are 25 and 24,

respectively. After using the two kernels to perform the

convolutional operation, the results are added together to

complete the convolutional operation for kernel sizes larger

than 5x5. Hence, although there are only 25 PEs in the proposed

reconfigurable convolutional array, the reconfigurable

convolutional array can perform convolutional operations for

kernel sizes larger than 5x5.

(a)1x1

(b) 3x3

(c) 7x7=25+24

Figure 10. Reconfigurable convolutional array for different kernel sizes

To take advantage of data reuse, the sliding window is

moving downwards, so the partial sum of the previous

operation can be reused. One row of the kernel data can

generate a valid output. Taking a 3x3 kernel size as an example,

one output is generated after every three input data values enter

the array. In other words, an average of three clock cycles will

have an output. According to the row size of the kernel, the

number of cycles needed to generate an output can be

determined.

V. EXPERIMENTAL SETUP AND RESULTS

This section first introduces the experimental environment.

Then, it details the accuracy and performance comparison.

A. Experimental Setup

The neural network is built with Python, and CLIP-Q is used

to quantize model weights, where P is set to 20%, and B is set

to 2. The bit width of the weights and activations are 8-bit, and

the computational data are quantized to 8 bits. Therefore, during

CNN inference, the data format in the software and hardware

computation are equivalent, and the accuracies of the inference

are also the same. After training, the parameters with the highest

accuracy are saved, i.e., the model’s weight and bias are saved

into a file to facilitate the hardware implementation.

This design is implemented on the PYNQ-Z2 FPGA

development board, where the FPGA chip is XC7Z020. The

design is implemented in Verilog, and the development

software is Vivado (v2018.3). The hardware resources utilized

in the system are shown in Table 5. Due to the limited number

of DSPs, the 8-bit multipliers are synthesized using LUT.

Therefore, the utilization rate of LUT is relatively high. The

DSP is mainly used by the Controller circuit to calculate the

data address. Compared to DSP, implementing 8-bit multipliers

with LUT can reduce energy consumption. The input BRAM

and output BRAM, which contain the input and output data for

a layer, account for a large part of the BRAM usage.

TABLE 5. RESOURCE UTILIZATION ON XC7Z020

 LUT LUTRAM FF DSP BRAM

Available 53,200 17,400 106,400 220 140

Used 42,416 521 22,498 5 120

Percent (%) 79.73 2.99 21.14 2.27 85.71

TABLE 6. ACCURACY COMPARISON OF DIFFERENT

QUANTIZATION ALGORITHMS IN THE NIN MODEL

quantization input bits weight bits Cifar 10 Cifar 100

Full 32 32 90.88% 67.32%

8-bit 8 8 89.82% 65.86%

TNN 2 2 83.74% 53.02%

BNN 1 1 81.52% 40.36%
8-bit CLIP-Q 8 8 (only 4

weights)

90.73% 67.07%

B. Accuracy Comparison

After quantization and the CLIP-Q fixed-segment

adjustments, there are only four 8-bit weights per layer, which

 8

conserves a considerable amount of storage. However, it is

important the accuracy of the model is maintained. If the

accuracy can be maintained, the proposed CLIP-Q is suitable

for quantization implemented in the CNN accelerator. Table 6

compares the Cifar-10 and Cifar-100 accuracy of the models

using different quantization methods. All the accuracies in

Table 6 are generated by experiments in the 9-layer NIN model.

FULL means that the 32-bit float full precision data format is

used. 8-bit represents the input, and weight data are quantized

to 8-bit precision. TNN means that all data are represented by

+1, 0, -1, and BNN only uses +1 and -1 to represent data.

It can be seen from Table 6 that although TNN and BNN save

a lot of storage space for weights and inputs, the accuracy is

reduced. Especially in the Cifar-100, the accuracy is

significantly different from the full precision. The accuracy of

the 8-bit precision is closer to the full precision, but there is still

a 2% drop in the Cifar-100 test data. However, the adjusted 8-

bit CLIP-Q has almost the same accuracy as the full-precision,

and only four 8-bit weights are needed. The proposed CLIP-Q

significantly reduces storage space and can achieve almost the

same accuracy as full precision.

C. Performance Comparison

Table 7 shows the required cycles to read input feature maps

for various kernel sizes in the reconfigurable convolution

design. In the proposed 5x5 reconfigurable convolutional array,

as long as the kernel size is not higher than 25(=5x5), it is only

necessary to read the input feature map once to complete the

convolution. For convolution kernel sizes higher than 5x5, the

kernel is divided into smaller kernels, each of which is equal to

or smaller than 25. Therefore, the input access time of large-

size kernels is equal to the kernel size divided by 25. Compared

to [32], where convolutions of different kernel sizes were

completed using a 3x3 kernel size, our reconfigurable design

reduces the input data access time. Thus, it can also complete

convolution faster than was the case in [32].

TABLE 7. COMPARISON OF INPUT FEATURE MAP

READING TIMES IN DIFFERENT KERNEL SIZE

kernel size [32] ours

1x1 1 1

3x3 1 1
5x5 4 1

7x7 9 2

9x9 9 4
11x11 16 5

Table 8. COMPARISON BETWEEN DIFFERENT IMPLEMENTATIONS
ON FPGA

 [33] [34] [32] ours

Platform Virtex 7

VX485t

Virtex 7

VX485t

Zynq

XC7Z020

Zynq

XC7Z020

Clock 100Mhz 156Mhz 214Mhz 111Mhz

Data format 32-bit float 16-bit fixed 8-bit fixed 8-bit fixed

Power(W) 18.61 30.2 3.5 2.147

GOP/S 61.62 565.9 84.3 91.1

GOP/S/W 3.31 22.15 24.1 42.4

Table 8 shows a comparison between the proposed design

and related work. Because the proposed 5x5 convolutional

array improves the input and output channel parallelism, the

overall GOP/S performance was increased. Furthermore, since

the multipliers were synthesized using LUT, the power

consumption was less than when using DSP. Also, we used

fewer flip-flops on the convolution circuit, which also reduced

the power consumption. According to Table 8, our CNN

accelerator’s GOP/S/W were relatively higher than those in

other work, which means the proposed design had higher

energy efficiency.

VI. RELATED WORK

In this section, we discuss previously designed FPGA-based

CNN accelerator. Angel-Eye [32] proposed a software-

hardware codesign for embedded CNN applications and used a

3x3 convolver to handle different computational workloads of

various kernel size; however, the utilization rate of its 3x3

convolvers is only 1/9 when dealing with 1×1 kernel. Instead of

designing the accelerator directly. High-level synthesis was

used to generate the design with the help of roofline model in

[33]. It measured the compute and memory requirements for

each layer of a CNN model and came up with suitable

architectures that efficiently utilize the memory bandwidth.

However, it mapped full precision CNN models directly to

FPGAs without considering the underlying hardware costs, and

common strategies such as data quantization and model pruning

were not applied. An end-to-end FPGA-based CNN accelerator

aiming for high throughput and high resource utilization was

proposed in [34]. While different layers have different

compute-to-memory ratio, it proposed a batch-based method

for fully connected layer to better utilize memory bandwidth. It

adopted 16-bit data quantization for input and weight data;

however, its models were not pruned and was unfriendly to

resource-limited FPGAs.

VII. CONCLUSIONS

CLIP-Q significantly reduces the CNN weight storage

requirement while also maintaining accuracy. This feature

makes CLIP-Q suitable for a CNN. However, the current CLIP-

Q approach did not consider the hardware characteristics and

the method for applying CLIP-Q when designing a CNN

hardware accelerator was not straightforward. In this work, we

propose a software-hardware codesign platform that includes

both the software flow and the hardware accelerator. The

software flow obtained neural model parameters suitable for

hardware implementation. We also designed a CNN hardware

accelerator. The accelerator executed convolutions with various

kernel sizes through 5x5 reconfigurable convolutional arrays

and improved parallelism in both the input and output channels.

The experimental results show that the proposed CNN

accelerator has higher energy efficiency than the state-of-the art

alternatives.

REFERENCES

 9

[1] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan, “Hcp:
A flexible CNN framework for multi-label image classification,” IEEE

transactions on pattern analysis and machine intelligence, vol. 38, no. 9, pp.

1901–1907, 2015.
[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” in Advances in neural information

processing systems, 2012, pp. 1097–1105.
[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in

Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[4] S. Gidaris and N. Komodakis, “Object detection via a multi-region and

semantic segmentation-aware CNN model,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1134–1142.

[5] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region- based fully

convolutional networks,” in Advances in neural information processing
systems, 2016, pp. 379–387.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

“Ssd: Single shot multibox detector,” in European conference on computer
vision. Springer, 2016, pp. 21–37.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 779– 788.

[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” arXiv preprint arXiv:1412.7062, 2014

[9] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 3431–3440.

[10] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution residual
networks for semantic segmentation in street scenes,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.

4151–4160.
[11] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

arXiv preprint arXiv:1511.07122, 2015.

[12] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, “Learning to reason:
End-to-end module networks for visual question answering,” in Proceedings

of the IEEE International Conference on Computer Vision, 2017, pp. 804–813.

[13] M. Malinowski, M. Rohrbach, and M. Fritz, “Ask your neurons: A neural-based
approach to answering questions about images,” in Pro- ceedings of the IEEE

international conference on computer vision, 2015, pp. 1–9.

[14] H. Noh, P. Hongsuck Seo, and B. Han, “Image question answering using
convolutional neural network with dynamic parameter prediction,” in

Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 30–38.
[15] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola, “Stacked attention networks

for image question answering,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 21– 29.
[16] D. Palaz, R. Collobert et al., “Analysis of cnn-based speech recognition system

using raw speech as input,” Idiap, Tech. Rep., 2015.

[17] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.
D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to end learning for self-

driving cars,” arXiv preprint arXiv:1604.07316, 2016.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[19] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 4700–4708.

[20] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song
et al., “Going deeper with embedded fpga platform for convolutional neural

network,” in Proceedings of the 2016 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. ACM, 2016, pp. 26–35.
[21] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.
[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks,” in Proceedings of International conference on neural

information processing systems, 2016, pp. 4114–4122
[23] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” arXiv

preprint arXiv:1612.01064, 2016.

[24] F. Tung and G. Mori, “Clip-q: Deep network compression learning by in
parallel pruning-quantization,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 7873–7882

[25] F. Tung and G. Mori, “Deep Neural Network Compression by In-Parallel
Pruning-Quantization,” in IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 42, no. 3, pp. 568-579, 2020.

[26] H. Yonekawa and H. Nakahara, “On-chip memory based binarized
convolutional deep neural network applying batch normalization free

technique on an fpga,” in International Parallel and Dis-tributed Processing

Symposium Workshops (IPDPSW), 2017, pp. 98–105
[27] P. Guo, H. Ma, R. Chen, P. Li, S. Xie and D. Wang, “FBNA: A Fully Binarized

Neural Network Accelerator,” in International Conference on Field

Programmable Logic and Applications (FPL), 2018, pp. 51-513
[28] B. Jacob, S. Kligys, B. Chen et al., “Quantization and training of neural

networks for efficient integer-arithmetic-only inference,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
2704–2713.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[30] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint

arXiv:1312.4400, 2013.

[31] T. Liang, J. Glossner, L. Wang, S. Shi, X. Zhang, “Pruning and quantization for
deep neural network acceleration: A survey, “Neurocomputing, vol. 461, no.

7, pp. 370-403, 2021.

[32] K. Guo, L. Sui, J. Qiu et al., “Angel-eye: A complete design flow for mapping

CNN onto embedded FPGA,” IEEE Transactions on Computer- Aided Design

of Integrated Circuits and Systems, vol. 37, no. 1, pp. 35–47, 2017.

[33] C. Zhang, P. Li, G. Sun et al., “Optimizing FPGA-based accelerator design for
deep convolutional neural networks,” in Proceedings of the 2015

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

ACM, 2015, pp. 161–170.
[34] H. Li, X. Fan, L. Jiao et al., “A high performance FPGA-based accelerator for

large-scale convolutional neural networks,” in 2016 26th Inter- national

Conference on Field Programmable Logic and Applications (FPL). IEEE,
2016, pp. 1–9.

[35] Z.Song et al., “DRQ: Dynamic Region-Based Quantization for Deep Neural

Network Acceleration,” in Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, 2020, pp. 1010–1021,

doi: 10.1109/ISCA45697.2020.00086.
[36] X.Zhou et al., “Cambricon-S: Addressing Irregularity in Sparse Neural

Networks through A Cooperative Software/Hardware Approach,” in 2018 51st

Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018, pp. 15–28, doi: 10.1109/MICRO.2018.00011.

[37] S. Q.Zhang, B.McDanel, H. T.Kung, and X.Dong, “Training for Multi-

Resolution Inference Using Reusable Quantization Terms,” in Proceedings of
the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, 2021, pp. 845–860, doi:

10.1145/3445814.3446741.

Wei Cheng received the B.E. degree in computer

engineering from the University of Hong Kong, 2018.
He is currently a master student in Department of

Computer Science and Information Engineering in

National Cheng Kung University. His research
interests lie in the field of very large-scale integration

design, computer architecture, and deep neural

network accelerators.

Ing-Chao Lin (M’09–SM’14) received the M.S. degree

in computer science from the National Taiwan
University, Taipei, Taiwan, and the Ph.D. degree from

the Computer Science and Engineering Department,

Pennsylvania State University, State College, PA, USA,
in 2007. From 2007 to 2009, he was with Real Intent,

Inc., Sunnyvale, CA, USA, and since 2009, he has been

with the Department of Computer Science and
Information Engineering, National Cheng Kung

University, Tainan, Taiwan, where he is currently a Full Professor. He was a

visiting scholar at University of California, Santa Barbara in 2015, and he was
a visiting scholar at Academia Sinica in 2017. His current research interests

include very large-scale integration design and computer-aided design for

nanoscale silicon, energy-efficient reliable system design, and computer
architecture. He has served on the technical program committee of several

conferences such as ASP-DAC, ICCAD, ICCD, and GLSVLSI. He is an ACM

senior member since May 2016 and he was awarded Excellent Young

 10

Researcher by Chinese Institute of Electrical Engineering in 2015 and Best
Young Professionals (Formerly GOLD) by IEEE Tainan Section in 2016,

Humboldt Fellowship for Experienced Researcher in 2019

Yung-Yang Shih received the M.S. degree in

computer science and information engineering from

National Cheng Kung University in 2020, and he is
currently with Mediatek Inc. His research interests lie

in the field of very large-scale integration design and

deep neural network accelerators.

